их интенсивность с изменением расстояния? В 1973 г. Гросс и Фрэнк Вильчек из Принстона и независимо от них Дэвид Политцер из Гарварда исследовали этот вопрос и получили удивительный результат. Квантовое облако, состоящее из рождающихся и аннигилирующих частиц,
Джорджи, Куинн и Вайнберг использовали эти идеи и довели их до замечательного финала. Они показали, что если аккуратно учесть влияние всех этих квантовых флуктуаций, то мы увидим, что интенсивности всех трёх негравитационных взаимодействий станут
Высокие энергии, которые исследуются на таких малых расстояниях, значительно превышают те, с которыми мы обычно имеем дело, однако такие энергии были характерными для бурной и раскалённой Вселенной в момент, когда её возраст составлял примерно одну тысячную от одной триллионной триллионной триллионной (10?39) доли секунды, а её температура, как упоминалось выше — около 1028 K. Эти теоретические работы показали, что примерно так же, как набор самых различных ингредиентов — кусков металла, дерева, горных пород, минералов и т. п. — сплавляется в единое целое и образует однородную, гомогенную плазму при нагреве до достаточно высокой температуры, сильное, слабое и электромагнитное взаимодействия при такой огромной температуре сливаются в одно величественное взаимодействие. Схематически это показано на рис. 7.1.{55}

Рис. 7.1. Интенсивность трёх негравитационных взаимодействий при уменьшении расстояния или (что эквивалентно) при увеличении энергии
Хотя у нас нет устройств, с помощью которых можно было бы производить измерения на столь малых расстояниях или воспроизводить столь высокие температуры, за время, прошедшее с 1974 г., экспериментаторам удалось существенно уточнить значения интенсивности трёх негравитационных взаимодействий в обычных условиях. Эти данные, являющиеся начальными точками на трёх кривых изменения интенсивности взаимодействий, показанных на рис. 7.1, представляют собой исходные данные для квантово-механических расчётов, выполненных Джорджи, Куинн и Вайнбергом. В 1991 г. Уго Амальди из ЦЕРНа, Вим де Боер и Герман Фюрстенау из университета Карлсруэ в Германии пересчитали результаты Джорджи, Куинн и Вайнберга с использованием новых экспериментальных данных и продемонстрировали два замечательных факта. Во-первых, интенсивность трёх негравитационных взаимодействий

Рис. 7.2. Уточнение расчёта интенсивностей взаимодействий показало, что без суперсимметрии они очень близки, но не совпадают
Для большинства физиков чрезвычайно трудно поверить в то, что природа могла выбрать взаимодействия таким образом, чтобы на микроскопическом уровне они были
Другой аспект этих последних достижений связан с тем, что они дают возможный ответ на вопрос, почему до сих пор не открыта ни одна частица-суперпартнёр. Расчёты, подтвердившие равенство интенсивности взаимодействий, а также ряд других исследований, выполненных физиками, показали, что частицы-суперпартнёры должны быть намного тяжелее, чем все открытые до сих пор частицы. Хотя точный прогноз дать пока невозможно, проведённые исследования показывают, что частицы-суперпартнёры должны быть как минимум в тысячу раз тяжелее протона. Это объясняет, почему такие частицы до сих пор не обнаружены: даже самые современные ускорители не способны развивать такие энергии. В главе 9 мы вернёмся к вопросу о перспективах экспериментальной проверки того, является ли суперсимметрия реальным свойством нашего мира.
Конечно, приведённые доводы в пользу того, чтобы принять суперсимметрию или, по крайней мере, не отвергать такой возможности, не являются неоспоримыми. Мы описали, как суперсимметрия придаёт нашим теориям наиболее симметричный вид, но вы можете возразить, что мироздание, возможно, вовсе не стремится принять наиболее симметричную форму, достижимую с математической точки зрения. Мы обратили ваше внимание на важный технический момент, состоящий в том, что суперсимметрия избавляет нас от необходимости детальной подгонки параметров стандартной модели для преодоления ряда тонких проблем в квантовой теории, но вы можете возразить, что истинная теория, описывающая явления природы, вполне может балансировать на тонкой грани между непротиворечивостью и саморазрушением. Мы показали, что на ничтожно малых расстояниях суперсимметрия изменяет интенсивность трёх негравитационных взаимодействий в точности так, чтобы они могли слиться в одно великое объединённое взаимодействие, но вы, опять же, можете возразить, что в устройстве мироздания нет ничего, что диктовало бы необходимость совпадения интенсивности этих взаимодействий на микроскопическом масштабе. Наконец, вы можете предположить, что частицы-суперпартнёры до сих пор не обнаружены просто потому, что наша Вселенная не является суперсимметричной и, следовательно, частицы- суперпартнёры не существуют.
Никто не может опровергнуть ни одно из этих возражений. Однако доводы, говорящие в пользу суперсимметрии, необычайно усиливаются, если мы рассмотрим её роль в теории струн.
Суперсимметрия в теории струн
Первоначальный вариант теории струн, начало которой было положено работой Венециано в конце 1960-х гг., содержал все виды симметрии, которые обсуждались в первых пунктах этой главы, но не включал суперсимметрию (которая в то время ещё не была открыта). Эта первая теория, базировавшаяся на концепции струн, называлась
Во-первых, если назначением теории струн было описание всех взаимодействий и всех видов материи, она должна была каким-то образом включать фермионные моды колебаний, поскольку все