программу U нельзя написать, поясню, опуская детали (к которым можно придраться, но они все же несущественны), в чем тут дело. Если бы такая программа U была написана, то ее можно было бы легко переделать так, чтобы вместо команды вывода изображения девушки на экран она бы зацикливалась (вставить для этого, скажем, «вечный цикл» for(„); ). Пусть эта переделанная программа называется U2. Что будет делать программа U2, если ей на вход подать текст программы U2 (текст себя самой)? Если она зацикливается, то она должна показать фотографию юноши и остановиться, т.е. не зациклиться. Но если она не зацикливается, это значит, что она должна зациклиться (поскольку вывод девушки в программе U был заменен на «вечный цикл»). Тем самым программа U2 оказывается в безвыходном положении, несовместимом с допущением возможности ее существования. –
Ответ на это возражение вкратце состоит в следующем. Установлено, что возможности любой конкретной машины ограничены, однако в разбираемом возражении содержится голословное, без какого бы то ни было доказательства, утверждение, что подобные ограничения не применимы к разуму человека. Я не думаю, чтобы можно было так легко игнорировать эту сторону дела. Когда какой-либо из такого рода машин задают соответствующий критический вопрос и она дает определенный ответ, мы заранее знаем, что ответ будет неверным, и это дает нам чувство известного превосходства. Не является ли это чувство иллюзорным? Несомненно, оно бывает довольно искренним, но я не думаю, чтобы ему следовало придавать слишком большое значение. Мы сами слишком часто даем неверные ответы на вопросы, чтобы то чувство удовлетворения, которое возникает у нас при виде погрешимости машин, имело оправдание. Кроме того, чувство превосходства может относиться лишь к машине, над которой мы одержали свою – в сущности весьма скромную – победу. Не может быть и речи об одновременном торжестве над
Я думаю, что те, кто разделяет точку зрения, выраженную в математическом возражении, как правило, охотно примут «игру в имитацию» в качестве основы дальнейшего рассмотрения. Те же, кто убежден в справедливости двух предыдущих возражений, будут, вероятно, вообще не заинтересованы ни в каком критерии.
4. Возражение с точки зрения сознания
[The Argument from Consciousness]
Это возражение особенно ярко выражено в выступлении профессора
Это рассуждение, по-видимому, означает отрицание нашего критерия. Согласно самой крайней форме этого взгляда, единственный способ, с помощью которого можно удостовериться в том, что машина может мыслить, состоит в том, чтобы
В русском издании статьи «Может ли машина мыслить?» к этому примечанию добавлено еще одно предложение: «Солипсизм есть крайняя форма философии субъективного идеализма». Школьная форма солипсического credo, высказываемая иногда наиболее продвинутыми учащимися на уроках обществоведения, звучит примерно так: «Вы все существуете лишь в моем воображении, реален лишь я вместе с моими чувствами и ощущениями». Между тем великий философ Людвиг Витгенштейн (1889–1951), чьи лекции по философии математики в Кембридже посещал Тьюринг, заметил как-то: «Здесь мы можем видеть, что солипсизм совпадает с чистым реализмом, если он строго продуман». Эти слова Витгенштейна были выбраны в качестве эпиграфа к рассказу известного современного писателя Виктора Пелевина «Девятый сон Веры Павловны» и определили его содержание; см. напр.:
Я уверен, что профессор Джефферсон отнюдь не желает стоять на этой крайней солипсистской точке зрения. Вероятно, он весьма охотно принял бы в качестве критерия «игру в имитацию». Эта, игра (если игрок В не участвует) нередко применяется на практике под названием
Задающий вопросы: Не находите ли Вы, что в первой строке Вашего сонета: «Сравню ль тебя я с летним днем» выражение «с весенним днем» звучало бы лучше?
Отвечающий: Оно нарушало бы размер стиха.
Задающий вопросы: А если сказать «с зимним днем»? С размером здесь все обстоит благополучно.
Отвечающий: Это так, но никто не захочет, чтобы его сравнивали с зимним днем.
Задающий вопросы: А разве мистер Пиквик не напоминает Вам Рождество?
Отвечающий: Некоторым образом да.
Задающий вопросы: Но Рождество – зимний день, и я не думаю, чтобы мистер Пиквик имел что-нибудь против этого сравнения.
Отвечающий: Я не думаю, что вы говорите все это всерьез. Когда говорят о зимнем дне, имеют в виду обычно зимний день, а не какой-то особенный, вроде Рождества.
И так далее. Что бы сказал профессор Джефферсон, если бы машина, пишущая сонеты, могла отвечать примерно так, как это было в приведенном выше отрывке из