В каком году родились Де Морган и Дженкинс?
35. «Простая» арифметика. Однажды при посещении дома для душевнобольных я спросил двух пациентов, сколько им лет. Они ответили. Решив испытать их арифметические способности, я попросил сложить два названных возраста. У одного получилось при этом 44, а у другого 1280. Я сообразил, что первый вычел один возраст из другого, а второй их перемножил. Сколько лет было больным?
36. Древняя задача. Вот пример задачи, которую можно предлагать за завтраком. Ее сформулировал Метродор в 310 г. до н. э.
Демохар четверть своей жизни был мальчиком, одну пятую — юношей, треть — мужчиной и 13 лет прожил стариком. Сколько всего лет он прожил?[2]
37. Возраст членов семьи. У одной супружеской пары было трое детей: Джон, Бен и Мэри. Причем разница в возрасте у родителей была такой же, как между Джоном и Беном и между Беном и Мэри. Произведение возрастов Джона и Бена равнялось возрасту отца, а произведение возрастов Бена и Мэри — возрасту матери. Общий возраст всех членов семьи равнялся 90 годам. Сколько лет было каждому из них?
38. Возраст Майка. «Пэту О’Коннору, — сказал полковник Крэкхэм, — теперь в 1?, раза больше лет, чем было тогда, когда он построил свинарник под окном своей гостиной. Маленькому Майку, которому в ту пору, когда Пэт построил свинарник, было 3 года и 4 месяца, теперь на 2 года больше, чем половина того возраста, в котором была Бидди, жена Пэта, когда Пэт построил свой свинарник, так что, когда маленькому Майку будет столько лет, сколько было Пэту, когда тот построил свинарник, то суммарный возраст всех троих достигнет ста лет. Сколько лет маленькому Майку сейчас?»
39. Сколько лет каждому сыну? Отца спросили, сколько лет двум его сыновьям. Тот ответил, что удвоенный возраст старшего сына на 18 лет превышает сумму возрастов обоих сыновей, а возраст младшего на 6 лет меньше разности их возрастов. Сколько лет каждому сыну?
40. Брат и сестра. Когда одного мальчика спросили, сколько лет ему и его сестре, он ответил:
— Три года назад я был в 7 раз старше сестры, два года назад — в 4 раза, в прошлом году — в 3 раза, а в этом году я в 2? раза старше ее.
Сколько лет мальчику и его сестре?
41. «Квадратная» семья. У одного человека было 9 детей, причем все они родились через одинаковые промежутки времени, а сумма квадратов их возрастов равнялась квадрату его собственного возраста. Сколько полных лет было каждому из детей?
42. В 1900 г. Один читатель задал в 1930 г. следующий вопрос. (На первый взгляд можно подумать, что для ответа на него не хватает данных, но это не так.) Он знал человека, который умер в возрасте, составлявшем от года его рождения. Сколько лет было этому человеку в 1900 г.?
43. Узнайте день рождения. Один читатель сообщил нам, что к полудню 11 ноября 1928 г. он прожил в XIX в. ровно столько же, сколько и в XX. Нам, конечно, захотелось узнать дату его рождения. Может быть, вы тоже сможете это сделать? Будем считать, что он родился в полдень,
44. Рождение Боадицеи. Боадицея[3] умерла через 129 лет после рождения Клеопатры. Их суммарный возраст (то есть сумма продолжительностей жизни каждой) равнялся ста годам. Клеопатра умерла в 30 г. до н. э. Когда родилась Боадицея?
45. Возраст Робинсона.
— Сколько вам лет, Робинсон? — спросил однажды полковник Крэкхэм.
— Точно не помню, — ответил тот, — но мой брат на 2 года старше меня. Моя сестра на 4 года старше брата. Когда я родился, моей маме было 20 лет, а вчера мне сказали, что средний возраст всех четверых составляет 39 лет.
Сколько лет Робинсону?
46. Часы из страны сновидений. Во сне я путешествовал по стране, где происходят удивительные вещи. Один случай запомнился мне так хорошо, что я не забыл его, даже когда проснулся. Во сне я увидел часы и произнес вслух время, которое они показывали, но мой проводник поправил меня. Он сказал:
— Очевидно, вы не знаете, что у нас минутные стрелки всегда движутся в направлении, противоположном часовым. Во всем остальном наши часы в точности такие же, как и те, к каким вы привыкли.
Если в тот момент, когда я смотрел на часы, обе стрелки совпали и находились между четырех- и пятичасовым делениями, а в полдень они обе показывали XII, то сколько времени было в ту минуту на обычных часах?
47. Когда это бывает? Когда стрелки часов располагаются таким образом, что если за расстояние принять число минутных делений после XII, то путь, пройденный одной из стрелок, равен квадрату пути, пройденному другой?
48. Часы с неразличимыми стрелками. У одного человека были часы, на которых совершенно невозможно было отличить часовую стрелку от минутной. Если эти часы пущены в полдень, то когда впервые нельзя будет узнать точное время?
Читатель должен помнить, что в подобных головоломках с часами существует соглашение, по которому считается, что мы в состоянии определять доли секунды. При таком допущении можно дать точный ответ.
49. Треснувший циферблат. Полковник Крэкхэм спросил за завтраком своих домашних, смогли бы они по памяти изобразить римские цифры, которые украшают циферблат часов. Джордж попал в ловушку, в которую многие уже попадали до него: он обозначил 4 ч цифрой IV вместо IIII.
Затем полковник Крэкхэм предложил угадать, как можно разбить циферблат на четыре части, чтобы при этом сумма цифр в каждой части равнялась 20. Чтобы пояснить, как это делается, полковник показал рисунок, на котором сумма цифр в двух частях действительно равна 20 (зато в двух остальных частях она равна соответственно 19 и 21, что делает этот пример непригодным в качестве решения).
50. Когда начался бал?
— На последнем балу, — сказала Дора во время завтрака, — гости подумали, что часы остановились: их стрелки находились в том же положении, что и в начале вечера. Однако оказалось, что часовая и минутная стрелки просто поменялись местами. Как вы помните, бал начался между десятью и одиннадцатью часами. Не можете ли вы назвать время более точно?
51. Перепутанные стрелки.
— Вчера между двумя и тремя часами, — сказал полковник Крэкхэм, — я взглянул на часы и, перепутав часовую стрелку с минутной, ошибся в определении времени. Ошибочное время было на 55 минут меньше истинного. Сколько времени было на самом деле?
52. Равные расстояния. Несколько дней назад профессор Рэкбрейн огорошил своих студентов следующей головоломкой: «Когда между тремя и четырьмя часами минутная стрелка находится на том же расстоянии от VIII, что и часовая от XII?»
53. Справа и слева. В какое время между тремя и четырьмя часами минутная стрелка находится на таком же расстоянии слева от XII, на каком часовая стрелка находится справа от XII?
54. Под прямым углом. Однажды за завтраком профессор Рэкбрейн задал своим юным друзьям легкий вопрос:
— Когда между пятью и шестью часами часовая и минутная стрелки будут находиться точно под прямым углом?
55. Вестминстерские часы. Один человек шел как-то утром по Вестминстерскому мосту между восьмью и девятью часами, если судить по башенным часам (которые часто по недоразумению называют Большим Беном, хотя так называется только большой колокол; но это между прочим).