414. Число различных путей равно 264. Эта головоломка довольно трудна, но недостаток места не позволяет мне показать наилучший метод подсчета всех маршрутов.
415. Существует 60 маршрутов, следуя по которым миссис Симпер могла бы посетить каждый город по одному и только по одному разу, закончив путь в
Если это заинтересует читателя, то он может попытаться самостоятельно определить все 8 маршрутов. Поступив таким образом, он обнаружит, что маршрутом, удовлетворяющим всем условиям, то есть не включающим в себя два тоннеля и задерживающим визит в

416. На рисунке показан маршрут длиной 76 км, состоящий из 16 прямолинейных участков и не охватывающий только 3 города. Эта головоломка не простая, ее решение можно найти только после большого числа проб и ошибок.
[Милли улучшил решение, найдя 76-километровый путь, состоящий из 16 отрезков и не захватывающий только
417. На рисунке, где для большей ясности опущены неиспользованные дороги, показаны маршруты всех 5 автомобилей. Все маршруты не имеют общих участков и не пересекаются. Хотя точного правила для решения головоломок такого рода указать нельзя, тем не менее, внимательно подумав, мы обычно можем справиться со встретившимися здесь трудностями. Например, уже было показано, что если соединить

418. При любом способе первой буквой должна быть
419. Эту головоломку можно решить с помощью поразительно малого числа росчерков, а именно 14, начиная из

420. Нарисовать змею менее чем 13 линиями невозможно. Поэтому необходимо найти самую длинную из этих линий. На нашем рисунке мы начинаем в

421. Существуют разные варианты решения; один из них показан на рисунке. Однако совершенно необходимо, чтобы вы начинали в

422. Головоломку решить можно, но при этом необходимо начинать рисунок в точке

423. Из рисунка видно, что путь узника полностью удовлетворяет заданным условиям, пока узник не попадает в

424. На рисунке показан изящный способ посадки деревьев в 9 рядов по 4 дерева в каждом.
425. Расположите 16 монет в виде квадрата 4 ? 4. Затем положите по одной монете сверху на первую монету первой строки, на третью монету второй, на четвертую — третьей и на вторую — четвертой строки.

426. На рисунке показано, как следует пересадить 6 деревьев, чтобы получилось 20 рядов по 4 дерева в каждом.

427. На рисунке показано, как следует расположить колышки. Три колышка из дырок, отмеченных крестиками, надо поместить в левый верхний угол. После этого 10 колышков образуют 5 рядов по 4 колышка в каждом. Если вы отразите диаграмму в зеркале, то получите единственное решение, отличное от данного.

428. Решение показано на рисунке. Десять фишек образуют 5 прямых по 4 фишки на каждой.

429. На рисунке видно, что корабли образуют 5 прямых по 4 корабля на каждой, а белые призрачные корабли указывают позиции, с которых 4 из них были перемещены.

430. На рисунке представлено симметричное решение, при котором 21 звезда образует 11 прямых по 5 звезд на каждой прямой.
431. Очевидно, что для двух и большего числа прилегающих стран необходимы по крайней мере две краски (случай

Для пяти прилегающих стран потребуются 3 краски, если одна страна прилегает к двум прилегающим