Four other handy functions are EVERY, SOME, NOTANY, and NOTEVERY, which iterate over sequences testing a boolean predicate. The first argument to all these functions is the predicate, and the remaining arguments are sequences. The predicate should take as many arguments as the number of sequences passed. The elements of the sequences are passed to the predicate—one element from each sequence—until one of the sequences runs out of elements or the overall termination test is met: EVERY terminates, returning false, as soon as the predicate fails. If the predicate is always satisfied, it returns true. SOME returns the first non-NIL value returned by the predicate or returns false if the predicate is never satisfied. NOTANY returns false as soon as the predicate is satisfied or true if it never is. And NOTEVERY returns true as soon as the predicate fails or false if the predicate is always satisfied. Here are some examples of testing just one sequence:

(every #'evenp #(1 2 3 4 5)) ==> NIL

(some #'evenp #(1 2 3 4 5)) ==> T

(notany #'evenp #(1 2 3 4 5)) ==> NIL

(notevery #'evenp #(1 2 3 4 5)) ==> T

These calls compare elements of two sequences pairwise:

(every #'> #(1 2 3 4) #(5 4 3 2)) ==> NIL

(some #'> #(1 2 3 4) #(5 4 3 2)) ==> T

(notany #'> #(1 2 3 4) #(5 4 3 2)) ==> NIL

(notevery #'> #(1 2 3 4) #(5 4 3 2)) ==> T

Sequence Mapping Functions

Finally, the last of the sequence functions are the generic mapping functions. MAP, like the sequence predicate functions, takes a n-argument function and n sequences. But instead of a boolean value, MAP returns a new sequence containing the result of applying the function to subsequent elements of the sequences. Like CONCATENATE and MERGE, MAP needs to be told what kind of sequence to create.

(map 'vector #'* #(1 2 3 4 5) #(10 9 8 7 6)) ==> #(10 18 24 28 30)

MAP-INTO is like MAP except instead of producing a new sequence of a given type, it places the results into a sequence passed as the first argument. This sequence can be the same as one of the sequences providing values for the function. For instance, to sum several vectors—a, b, and c—into one, you could write this:

(map-into a #'+ a b c)

If the sequences are different lengths, MAP-INTO affects only as many elements as are present in the shortest sequence, including the sequence being mapped into. However, if the sequence being mapped into is a vector with a fill pointer, the number of elements affected isn't limited by the fill pointer but rather by the actual size of the vector. After a call to MAP-INTO, the fill pointer will be set to the number of elements mapped. MAP-INTO won't, however, extend an adjustable vector.

The last sequence function is REDUCE, which does another kind of mapping: it maps over a single sequence, applying a two-argument function first to the first two elements of the sequence and then to the value returned by the function and subsequent elements of the sequence. Thus, the following expression sums the numbers from one to ten:

(reduce #'+ #(1 2 3 4 5 6 7 8 9 10)) ==> 55

REDUCE is a surprisingly useful function—whenever you need to distill a sequence down to a single value, chances are you can write it with REDUCE, and it will often be quite a concise way to express what you want. For instance, to find the maximum value in a sequence of numbers, you can write (reduce #'max numbers). REDUCE also takes a full complement of keyword arguments (:key, :from-end, :start, and :end) and one unique to REDUCE (:initial-value). The latter specifies a value that's logically placed before the first element of the sequence (or after the last if you also specify a true :from-end argument).

Hash Tables

The other general-purpose collection provided by Common Lisp is the hash table. Where vectors provide an integer-indexed data structure, hash tables allow you to use arbitrary objects as the indexes, or keys. When you add a value to a hash table, you store it under a particular key. Later you can use the same key to retrieve the value. Or you can associate a new value with the same key—each key maps to a single value.

With no arguments MAKE-HASH-TABLE makes a hash table that considers two keys equivalent if they're the same object according to EQL. This is a good default unless you want to use strings as keys, since two strings with the same contents aren't necessarily EQL. In that case you'll want a so-called EQUAL hash table, which you can get by passing the symbol EQUAL as the :test keyword argument to MAKE-HASH-TABLE. Two other possible values for the :test argument are the symbols EQ and EQUALP. These are, of course, the names of the standard object comparison functions, which I discussed in Chapter 4. However, unlike the :test argument passed to sequence functions, MAKE-HASH-TABLE's :test can't be used to specify an arbitrary function—only the values EQ, EQL, EQUAL, and EQUALP. This is because hash tables actually need two functions, an equivalence function and a hash function that computes a numerical hash code from the key in a way compatible with how the equivalence function will ultimately compare two keys. However, although the language standard provides only for hash tables that use the standard equivalence functions, most implementations provide some mechanism for defining custom hash tables.

The GETHASH function provides access to the elements of a hash table. It takes two arguments—a key and the hash table—and returns the value, if any, stored in the hash table under that key or NIL.[129] For example:

(defparameter *h* (make-hash-table))

(gethash 'foo *h*) ==> NIL

(setf (gethash 'foo *h*) 'quux)

(gethash 'foo *h*) ==> QUUX

Since GETHASH returns NIL if the key isn't present in the table, there's no way to tell from the return value the difference between a key not being in a

Вы читаете Practical Common Lisp
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату