wormhole mouth; each half-twist contributed half a unit of spin. Fermions, particles such as electrons with an odd number of half-twists, had wormholes which could themselves become twisted like ribbons; if an electron was rotated 360 degrees, its wormhole would gain or lose a definite twist, with measurable consequences. Bosons, such as photons, had full twists in their wormhole mouths, but a 360-degree rotation left them unchanged because the kinks in their wormholes canceled themselves out. A single boson could be 'self-linked,' the only opening into a wormhole which looped back on itself, or any number of identical bosons could share a wormhole. Fermions were always joined in even numbers; the simplest case was a particle at one end of the wormhole, with its antiparticle at the other.

Under the extreme space-rime curvature of the early universe, countless vacuum wormholes had been 'squeezed from the weave' to take on a more tangible existence. Most had formed particle-antiparticle pairs like electrons and positrons, but more rarely they'd created less symmetric combinations, such as an electron at one end of the wormhole with a three-pronged branching into a triplet of quarks, making up a proton, at the other.

This was the origin of all matter. By sheer chance, the vacuum had shed slightly more electron-proton wormholes than their antimatter equivalent, positrons linked to antiprotons, before expanding and cooling to the point where particle production ceased. Without that tiny random excess, every last electron and proton would have been annihilated by a matching antiparticle, and there would have been nothing in the universe but the microwave background, reverberating through empty space.

Kozuch herself had pointed out in 2059 that if this version of Big Bang cosmology was correct, it meant that every surviving electron was linked to a proton, somewhere. Brand new wormholes with known endpoints could be manufactured at will, simply by creating pairs of electrons and positrons, but existing wormholes already crisscrossed interstellar space. After twenty billion years drifting through an evolving and expanding universe, many particles torn from the vacuum side-by-side would have ended up thousands of light years apart. Chances were, every grain of sand, every drop of water on Earth, contained gateways to each of the hundreds of billions of stars in the galaxy, and some that reached far beyond.

The catch was: nothing in the universe could pass through the wormhole mouth of an elementary particle. All the known particles possessed a single quantum unit of surface area, and the probability of any of them passing through another's wormhole was precisely zero.

This problem was not insurmountable. When an electron and a positron collided, their wormholes were spliced together end-to-end, making the two colliding mouths vanish. In that case two gamma-ray photons were produced, but if the wormholes could be spliced, not electron-end to positron-end but electron-end to electron- end, the energy normally lost as gamma rays would be trapped, and would go into making the new, spliced wormhole wider.

Achieving this union would require concentrating a modest amount of energy—two gigajoules, enough to melt a six-ton block of ice—into a volume as much smaller than that ice block as an atom was smaller than the observable universe. Wormholes produced by electron-electron splicing would be traversable only by fundamental particles, but splicing together a few billion of them would further widen the resulting wormhole, rather than lengthening it, enabling a moderately sophisticated nanomachine to pass through.

Gabriel had heard it rumored that the gleisners had considered the wormhole option, but elected to put it aside for the next few millennia. Building conventional interstellar spacecraft must have seemed trivial compared to the kind of technology it would take to tear open the portals to the stars scattered at their feet. Still, with 3,017 designs to choose from there had to be one within Carter-Zimmerman's reach, even if it took a thousand years to bring to fruition. Gabriel was undaunted by the time scale; he had long hoped for a grand scheme like this to make sense of his longevity. Without a purpose that spanned the centuries, he could only drift between interests and aesthetics, friends and lovers, triumphs and disappointments. He could only live a new life every gigatau or two, until there was no difference between his continued existence and his replacement by someone new.

Full of hope, he moved across the scape toward the first blueprint.

8

SHORT CUTS

Carter-Zimmerman polis, Earth

51 479 998 754 659 CST

7 August 3865, 14:52:31.813 UT

Blanca floated through the latest world ve'd grown from a novel symmetry group and a handful of recursion formulae. Giant inverted pyramids floated above ver, sprouting luminous outgrowths like rococo chandeliers. Feathery planar crystals swirled and grew around ver, then began to collide and merge into strange new objects, random acts of origami performed with diamond and emerald films. Below ver, a vast terrain of mountains and canyons was eroding in fast motion, carved by a blizzard of diffusion laws into glistening green and blue mesas, impossible overhangs, towering stratified sculptures veined with minerals unknown to chemistry.

In Konishi, ve would probably have called this 'mathematics.' In C-Z, it was necessary to call it 'art,' since anything else suggested a virtual universe in direct competition with the real one. Blanca had been dismayed to see the other polises sink back into complacency after the initial shock of carnevale, but ve still chafed against C- Z's growing orthodoxy when it proclaimed that to explore any system of rules that failed to illuminate the physics of reality amounted to pernicious solipsism. The beauty of the physical world had nothing to do with its power to harm that was just the dogma of the dead statics in another guise and everything to do with the simplicity and consistency of its laws. Blanca was unimpressed by claims that C-Z's physicists and engineers toiled only in the service of protecting the Coalition from the next dangerous cosmic surprise. It was the elegance of Kozuch Theory and the grandeur of the Forge itself that had kept them going; if either the guiding principles or the design had been the slightest bit uglier, they would have packed it in long ago.

Gabriel appeared beside ver, his fur dusted immediately with tiny crystals. Blanca reached over and brushed his shoulders affectionately; he responded by pressing a hand into the darkness of vis chest, inducing a gentle warmth throughout the whole invaded space. The places where Blanca's icon seemed to lose its tangible boundary were the most sensitive by far; they could be touched in three dimensions.

'We've had a neutralization in one ring.' Gabriel seemed pleased, but nothing in his voice or gestalt betrayed the fact that the whole Forge group had been working toward this moment for the last eight centuries. Blanca nodded slightly, a gesture packed with warmth that only vis lover could have decoded.

Gabriel said, 'Will you rush with me? Until confirmation?' He sounded slightly guilty to be asking.

The news would have just reached Earth that a positron in one of the Forge's magnetic storage rings had lost its charge and escaped into the surrounding laser trap, 65 hours ago. But it would take almost three more hours—ten megatau—for the crucial matching result from the second ring at the opposite end of the accelerator to arrive. Gabriel had lived through every similar delay tau-by-tau until now, patiently accepting the glacial slowness of manipulating matter on the hundred-terameter scale, but Blanca had certainly never seen it as some great moral principle.

'Why not?' They held hands in a cobalt blue snowdrift while their exoselves synched and slowed; the scape was synched directly to Blanca's mind, so it appeared to carry on at the same rate.

Ve watched Gabriel's face as they waited, cheating the time by a mere factor of a million instead of jumping the gap in a single bound. Even if it wasn't a moral issue, relating to the physical world could be a delicate balancing act. Should you dart from significant event to significant event, creating a life devoid of everything else? Probably not—but exactly how much subjective time should you endure between the moments you were, in all honesty, desperately waiting for? Gabriel had passed the time at the standard Coalition rate, mostly by immersing himself in elaborate schemes for the eventual deployment of the wormholes, in between his sparse contacts with the machinery of the Forge as it was constructed and tested. But he'd almost run out of future to plan; the last

Вы читаете Diaspora
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату