плотности, только она увеличивается в Z раз и на рис. 3 масштабы нужно уменьшить также в Z раз. Соответственно уменьшаются и размеры орбит.
Действие внешних полей на уровни энергии атома водорода. Во внешнем электрическом и магнитном полях А. как электрическая система приобретает дополнительную энергию. Электрическое поле поляризует А. — смещает электронное облако относительно ядра, а магнитное поле ориентирует определённым образом магнитный момент А., связанный с движением электрона вокруг ядра (с орбитальным моментом Ml) и его спином. Различным состояниям А. водорода с той же энергией Еn во внешнем поле соответствует различная дополнительная энергия DE и вырожденный уровень энергии Еn расщепляется на ряд подуровней (рис. 4). Как расщепление в электрическом поле — Штарка явление, так и расщепление в магнитном поле — Зеемана явление, для уровней энергии А. водорода пропорциональны напряжённости полей.
К расщеплению уровней энергии приводят и малые магнитные взаимодействия внутри А. Для А. водорода и водородоподобных ионов имеет место спин- орбитальное взаимодействие — взаимодействие спинового и орбитального моментов электрона, не учитываемое при выводе основной формулы (4); оно обусловливает т.н. тонкую структуру уровней энергии — расщепление возбуждённых уровней Еn (при n > 1) на подуровни. Наиболее точные исследования тонкой структуры методами радиоспектроскопии показали наличие т. н. сдвига уровней, объясняемого в квантовой электродинамике.
Для всех уровней энергии А. водорода наблюдается и сверхтонкая структура, обусловленная очень малыми магнитными взаимодействиями ядерного спина с электронными моментами. Уровень E1 расщепляется на 2 подуровня с расстоянием между ними примерно 5 10—6 эв.
Электронные оболочки сложных атомов. Теория сложных А., содержащих 2 или более электронов, принципиально отличается от теории А. водорода, т. к. в сложном А. имеются взаимодействующие друг с другом одинаковые частицы — электроны. Взаимное отталкивание электронов в многоэлектронном А. существенно уменьшает прочность их связи с ядром. Например, энергия отрыва единственного электрона в ионе гелия (Не+) равна 54,4 эв, в нейтральном же атоме гелия в результате отталкивания электронов энергия отрыва одного из них уменьшается до 24,6 эв. Для внешних электронов более тяжёлых А. уменьшение прочности их связи из-за отталкивания внутренними электронами ещё более значительно. Чрезвычайно важную роль в сложных А. играют свойства электронов как одинаковых микрочастиц (см. Тождественности принцип), обладающих спином s = 1/2, для которых справедлив Паули принцип. Согласно этому принципу, в системе электронов не может быть более одного электрона в каждом квантовом состоянии, что для сложного А. приводит к образованию электронных оболочек, заполняющихся строго определёнными числами электронов.
Учитывая неразличимость взаимодействующих между собой электронов, имеет смысл говорить только о квантовых состояниях А. в целом. Однако приближённо можно рассматривать квантовые состояния отдельных электронов и характеризовать каждый из них совокупностью четырёх квантовых чисел n, l, ml и ms, аналогично электрону в А. водорода. При этом энергия электрона оказывается зависящей не только от n, как в А. водорода, но и от l; от ml; и ms она по-прежнему не зависит. Электроны с данными n и l в сложном А. имеют одинаковую энергию и образуют определённую электронную оболочку; их называют эквивалентными электронами. Такие электроны и образованные ими оболочки обозначают, как и квантовые состояния и уровни энергии с заданными n и l, символами ns, nр, nd, nf, ... (для l = 0, 1, 2, 3 ....) и говорят о 2р-электронах, 3s-oболочках и т. п.
Заполнение электронных оболочек и слоёв. В силу принципа Паули любые 2 электрона в А. должны находиться в различных квантовых состояниях и, следовательно, отличаться хотя бы одним из четырёх квантовых чисел n, l, ml и ms. Для эквивалентных электронов (n и l одинаковы) должны быть различны пары значений mi и ms. Число таких пар равно числу различных квантовых состояний электрона с заданными n иl, т. е. степени вырождения его уровня энергии. Это число gl = 2 (2l + 1) = 2, 6, 10, 14, ... и определяет число электронов, полностью заполняющих данную оболочку. Т. о., s-, р-, d-, f-, ... оболочки заполняются 2, 6, 10, 14, ... электронами, независимо от значения n. Электроны с данным n образуют слой, состоящий из оболочек с l = 0, 1, 2, ..., n—1 и заполняемый 2n2 электронами, т. н. К-, L-, М-, N-, ...слой. При полном заполнении имеем:
n | 1 | 2 | 3 | 4 |
Слои | К-слой | L-слой | M-слой | N-слой |
l | 0 | 0 1 | 0 1 2 | 0 1 2 3 |
Оболочки | 1s | 2s 2p | 3s 3p 3d | 4s 4p 4d 4f |
Число электронов в слое | 2 | | | |
Наиболее близко к ядру расположен К-слой, затем идёт L-cлой, М-слой, N-cлой, ... В каждом слое оболочки с меньшими l характеризуются большей электронной плотностью вблизи ядра. Прочность связи электрона уменьшается с увеличением n, а при заданном n — с увеличением l; на рис. 5 схематически показаны (без соблюдения масштаба энергий) уровни энергии отдельного электрона в сложном А. Чем слабее связан электрон в соответствующей оболочке, тем выше лежит его уровень энергии. Ядро с заданным Z присоединяет электроны в порядке уменьшения прочности их связи: сначала два электрона 1s, затем два электрона 2s, шесть электронов 2p и т. д. в соответствии со схемой рис. 5. Это определяет электронные конфигурации, т. е. распределения электронов по оболочкам, для ионов и нейтрального А. данного элемента. Например, для азота (Z = 7) получаются электронные конфигурации
(число электронов в данной оболочке указывается индексом справа сверху). Такие же электронные конфигурации, как и ионы азота, имеют нейтральные атомы последовательных элементов в периодической системе, обладающие тем же числом электронов: Н, Не, Li, Be, В, С (Z = 1,2,3,4,5,6). Периодичность в свойствах элементов определяется сходством внешних электронных оболочек А. Например, нейтральные А. Р, As, Sb, Bi (Z = 15, 33, 51, 83) имеют по три р-электрона во внешней электронной оболочке подобно А. N и схожи с ним по химическим и многим физическим свойствам.
При рассмотрении заполнения электронных оболочек необходимо учитывать, что, начиная с n = 4, электроны с меньшим l, но большим n, связываются прочнее, чем электроны с большим l, но меньшим n, например электроны 4s связаны прочнее, чем электроны 3d. Это отражает рис. 5, показывающий расположение уровней энергии, соответствующее действительному порядку (несколько схематизированному) заполнения электронных оболочек для последовательных элементов в периодической системе элементов Д. И. Менделеева. Числа, стоящие справа у скобок, определяют числа