Фейдж, американские учёные Т. Карман, Х. Драйден, Х. Тейлор и многие др.

  В соответствии с методами решения возникающих задач А. делится на теоретическую и экспериментальную. Первая ищет решение путём теоретического анализа основных законов гидроаэромеханики, сформулированных в форме уравнений Л. Эйлером, Ж. Лагранжем, М. Навье, Г. Стоксом и др. Решение (интегрирование) этих уравнений для большинства практически важных задач даже в наше время возможно только при допущении, что вязкость воздуха равна нулю (замена воздуха «идеальным» газом). Однако решение упрощённых таким образом уравнений даёт результаты, противоречащие опыту. Например, сила аэродинамического сопротивления шара оказывается равной нулю (Д'Аламбера — Эйлера парадокс). Возникшее противоречие в известной степени было разрешено Л. Прандтлем, предложившим разделить пространство, в котором наблюдаются возмущения, вызванные движущимся телом, на две области: область, близкую к поверхности тела, где существенно влияние вязкости, т. н. пограничный слой, и область вне пограничного слоя, где воздух можно рассматривать как идеальный газ.

  Гипотеза Прандтля и разработанные им уравнения движения газа в пограничном слое (1904) в дальнейшем были развиты в работах многих учёных, в том числе советских (Л. Г. Лойцянский, А. А. Дородницын и др.), и дали возможность получить решение большого числа задач. Предложенная схема не полностью соответствует реально существующим течениям; кроме того, разработанные методы не позволяют теоретически рассчитать течение в случае турбулентного пограничного слоя и для тел сложной формы. В этих случаях приходится применять эмпирические методы, разрабатываемые на основе экспериментального изучения моделей рассматриваемого течения. При помощи анализа основных законов течения воздуха теоретическая А. разработаны вопросы подобия теории и моделирования, которые позволяют определить аэродинамические силы, действующие на летательный аппарат, в результате испытания маломасштабной модели этого аппарата. Теория моделирования позволяет также определить и условия, в которых должна испытываться модель. Этот раздел теоретической А. является основой экспериментальной А., главная задача которой состоит в получении численных значений аэродинамических сил, действующих на аппарат, путём испытания модели на специальных установках. В экспериментальной А. широко пользуются законом обращения движения, в соответствии с которым сила, действующая на тело, движущееся со скоростью v, равна силе, действующей на то же тело, закрепленное неподвижно и обдуваемое воздушным потоком с той же скоростью v.

  Установки, на которых исследуют силы и моменты, действующие на неподвижно закрепленную модель — аэродинамические трубы, являются основной частью экспериментальной базы аэродинамических лабораторий. Методы аэродинамических измерений позволяют детально исследовать силы, действующие на модель, а также распределение значений скорости, плотности и температуры воздуха перед моделью и за ней.

  При увеличении скорости полёта и приближении её к скорости звука необходимо учитывать сжимаемость среды. Сверхзвуковой полёт тела характеризуется рядом особенностей: возникают ударные волны, увеличивающие аэродинамическое сопротивление, летящее тело нагревается от трения о воздух и в результате излучения газа за ударной волной; при полёте с большой сверхзвуковой скоростью происходят диссоциация и ионизация газа в ударных волнах. Все эти вопросы, связанные с движением тел со скоростью, превышающей скорость звука, обычно относят к разделу гидроаэромеханики, называются газовой динамикой.

  Широкая область неавиационных приложений А. входит в науку, называемую промышленной аэродинамикой. В ней рассматриваются вопросы, связанные с расчётом воздуходувок, ветровых двигателей, струйных аппаратов (эжекторов), вентиляционной техники (в частности, кондиционирования воздуха), а также вопросы, связанные с аэродинамическими силами, возникающими при движении наземного транспорта (автомобилей, поездов), и ветровыми нагрузками на здания и сооружения.

  В СССР, кроме ЦАГИ, большая научно-исследовательская работа в области А. ведётся в ЦИАМе, в научно-исследовательских институтах АН СССР, в отраслевых научно-исследовательских институтах, в Московском, Ленинградском и других университетах, Московском и Харьковском авиационных институтах, в МВТУ, в Военно-воздушной инженерной академии им. Н. Е. Жуковского и других высших учебных заведениях. В США общее руководство исследованиями в области А. осуществляет NASA (Национальный комитет по аэродинамике и исследованию космического пространства), располагающий крупными лабораторными центрами в Моффетт-Филде (штат Калифорния), Ленгли-Филде (штат Виргиния) и др., а также в Калифорнийском и Массачусетсском технологических институтах, исследовательских институтах ВВС, ВМС и лабораториях крупных фирм, производящих самолёты, ракеты и вооружение. Крупные центры исследований в области А. имеются в Англии, Франции, Японии и других странах.

  Результаты научных исследований публикуются в периодических изданиях: «Известия АН СССР. Механика жидкости и газа» (с 1966); «Журнал прикладной механики и технической физики» (с 1960); «АIAA Journal» (N. Y., с 1963 — переводится на рус. яз.); «Journal of the Royal Aeronautical Society» (L., с 1897).

  Лит.: Фабрикант Н. Я., Аэродинамика, ч. 1, М.—Л., 1962: Прандтль Л., Гидроаэродинамика, пер. с нем., 2 изд., М., 1951; Мартынов А. К., Экспериментальная аэродинамика, 2 изд., М., 1958; Пышнов В. С., Аэродинамика самолета, М., 1943; Остославский И. В., Титов В. М.. Аэродинамический расчет самолета, М., 1947; Глауэрт Г., Основы теории крыльев и винта, пер. с англ., М. —Л., 1931.

  М. Я. Юделович.

Аэродинамика зданий

Аэродина'мика зда'ний, научная дисциплина, изучающая воздушные потоки, возникающие около зданий и внутри них под действием ветра, разности температур внутреннего и наружного воздуха, вентиляции и осуществляемых в помещениях производственных процессов (см. также Аэрация зданий) .

  Лит.: Реттер Э. И. и Стриженов Е. И., Аэродинамика зданий, М., 1968.

Аэродинамика разреженных газов

Аэродина'мика разре'женных га'зов, раздел механики газов, в котором для описания движения газов необходимо учитывать их молекулярное строение. Методы А. р. г. широко применяют при определении аэродинамического нагрева приземляющихся орбитальных аппаратов, низко летящих спутников Земли, для расчёта теплового режима приборных датчиков ракет, зондирующих верхние слои атмосферы, и т. д. Точный прогноз траекторий околопланетных спутников, испытывающих тормозящее действие разреженной атмосферы, невозможен без знания методов А. р. г., с помощью которых определяются аэродинамические силы и моменты, действующие на летящее в газе тело. А. р. г. изучает также течения газов в вакуумных системах, ультразвуковые колебания в газе и другие проблемы молекулярной физики.

  На больших высотах атмосфера очень разрежена и средняя длина свободного пробега l молекул между двумя соударениями становится сравнимой с характерным размером движущегося в атмосфере тела d (или рассматриваемой области потока). Поэтому методы расчёта течения, применяемые в аэродинамике и газовой динамике, основанные на представлении о газе, как о сплошной среде (континууме), непригодны и приходится прибегать к кинетической теории газа. При высоких температурах газа, имеющих место, например, при очень больших скоростях полёта, течение может сопровождаться эффектами возбуждения молекул, их диссоциацией, ионизацией и т. д. Эти проблемы также изучаются в А. р. г. А. р. г. принято делить на три области:

  1) свободное молекулярное течение,

  2) промежуточная область,

  3) течение со скольжением (рис. 1).

  При свободно молекулярном обтекании у отражённых от тела молекул длина свободного пробега l больше характерного размера тела d, поэтому взаимодействие отражённых молекул с набегающими молекулами вблизи

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату