видам применяемых вентилей В. т. подразделяют на электроконтактные, кенотронные, газотронные, тиратронные, ртутные, полупроводниковые и тиристорные.
Различают схемы В. т. однополупериодные, двухполупериодные с нулевым выводом и мостовые. На рис. 1 , а приведена однополупериодная схема выпрямителя однофазного тока. Основные элементы В. т.: трансформатор Тр, вентиль В и сглаживающий фильтр С . Напряжение U 1 , обычно синусоидальное, от источника переменного тока через трансформатор Тр подаётся на вентиль В. Ток J в нагрузке R н течёт только при положительной полярности подводимого напряжения, т. е. при открытом состоянии В . Конденсатор С заряжается положительными полуволнами пульсирующего тока, а в паузах, соответствующих по времени отрицательным полуволнам, разряжается на нагрузку. Таким образом, пульсирующий ток сглаживается, усредняется.
Однополупериодные однофазные схемы В. т. применяют главным образом в маломощных устройствах с ёмкостным или индуктивным сглаживающим фильтром. Основное преимущество — простота и малое число вентилей; недостатки — большие пульсации выпрямленного напряжения и высокое обратное напряжение на вентилях (при ёмкостном фильтре).
В двухполупериодной схеме В. т. (рис. 1 , б) применяют трансформатор со средней точкой во вторичной обмотке. Благодаря такому соединению обмотки с вентилями выпрямленный ток формируется из обеих полуволн тока. Частота пульсаций выпрямленного тока при этом возрастает в два раза по сравнению с однополупериодным В. т. (так, если U 1 — напряжение промышленной частоты 50 гц , то частота пульсации тока на нагрузке будет 100 гц ), что облегчает сглаживание. Мостовая схема В. т. (рис. 1 , в) также двухполупериодная, но вторичная обмотка трансформатора выполнена без средней точки и имеет в два раза меньшее количество витков по сравнению со вторичной обмоткой трансформатора на рис. 1 , б. Дополнительное сглаживание выпрямленного тока в этих схемах обеспечивается индуктивно- ёмкостными либо резистивно-ёмкостными фильтрами (см. Электрический фильтр ). Указанные схемы В. т. применяют обычно в системах питания устройств, у которых потребляемая мощность не превышает нескольких квт (радиоприёмники, телевизоры, некоторые устройства автоматики и телемеханики и др.), и лишь в отдельных случаях для питания мощных (до тысячи квт ) устройств (например, двигателей электровозов). Существуют В. т., в которых наряду с выпрямлением тока осуществляется умножение выпрямленного напряжения. Схемы с умножением обычно применяют в высоковольтных установках, предназначенных для испытания электрической изоляции, а также в рентгеновских установках, электронных осциллографах и т.п.
В трёхфазных цепях для питания мощных промышленных установок, во избежание несимметричности нагрузки на сеть электроснабжения, применяют схемы трёхфазных В. т. Первичная обмотка трансформатора в таких В. т. соединяется в звезду или треугольник. В зависимости от числа вторичных обмоток трансформатора различают 3-, 6-, 12-, 18-фазные и т.д. однополупериодные и мостовые выпрямители трёхфазного тока. На рис. 2, а приведена трёхфазная однополупериодная схема. Первичная обмотка трансформатора соединена треугольником, а вторичная — звездой. Фазные токи i1 , i2 , i3 выпрямляются и суммируются, образуя выпрямленный выходной ток J . В мостовой трёхфазной схеме (рис. 2 , б) обе обмотки трансформатора соединены звездой. Основные преимущества её такие же, как и у однофазных схем В. т.
Лит.: Каганов И. Л., Электронные и ионные преобразователи, ч. 1—3, М. — Л., 1950—56.
М. М. Гельман.
Рис. 2. Схемы выпрямителей трёхфазного тока: а — однополупериодная; б — двухполупериодная мостовая.
Рис. 1. Схемы выпрямителей однофазного тока: а — однополупериодная; б — двухполупернодная; в — мостовая.
Выпрямительный полупроводниковый диод
Выпрями'тельный полупроводнико'вый дио'д, двухэлектродный прибор с преимущественно односторонней (униполярной) электрической проводимостью. Выпрямительный эффект возникает на переходе металл — полупроводник или в электронно-дырочном переходе в кристалле (германий, кремний, закись меди, селен и др.), служащих основой прибора. В. п. д. применяют в электро- и радиотехнических устройствах для преобразования переменного тока (напряжения) в пульсирующий ток одной полярности (постоянный ток), т. е. для выпрямления тока, замыкания и размыкания электрических цепей, детектирования и коммутации электрических сигналов и других преобразований. См. Полупроводниковый диод .