) =
Вычислительная математика
Вычисли'тельная матема'тика, раздел математики, включающий круг вопросов, связанных с использованием электронных вычислительных машин (ЭВМ). Содержание термина «В. м.» нельзя считать установившимся, так как эта область интенсивно развивается в связи с быстро растущими применениями ЭВМ в новых направлениях. Часто термин «В. м.» понимается как теория численных методов и алгоритмов решения типовых математических задач. Это толкование термина «В. м.» получило распространение на первоначальном этапе, когда использование ЭВМ предъявило новые требования к численным методам; основной задачей на этом этапе была разработка новых методов, «удобных» для ЭВМ. Ниже В. м. понимается в первом — широком смысле этого термина.
В В. м. можно выделить следующие три больших раздела. Первый связан с применением ЭВМ в различных областях научной и практической деятельности и может быть охарактеризован как анализ математических моделей. Второй — с разработкой методов и алгоритмов решения типовых математических задач, возникающих при исследованиях математических моделей. Третий раздел связан с вопросом об упрощении взаимоотношений человека с ЭВМ, включая теорию и практику программирования задач для ЭВМ, в том числе автоматизацию программирования задач для ЭВМ.
Анализ математических моделей включает в себя изучение постановки задачи, выбор модели, анализ и обработку входной информации, численное решение математических задач, возникающих в связи с исследованием модели, анализ результатов вычислений, и, наконец, вопросы, связанные с реализацией полученных результатов. Задача выбора модели должна решаться с учётом следующего требования. Степень достоверности, с которой результаты анализа модели позволяют исследовать конкретное явление (или класс явлений), должна соответствовать точности исходной информации. При этом с появлением возможности получать более точную информацию обычно возникает необходимость совершенствования построенной модели, а в ряде случаев даже коренной её замены. Для этих задач приобретает существенное значение обработка исходной информации, что в большинстве случаев требует привлечения методов математической статистики. Математические модели сыграли важную роль в развитии естествознания; в настоящее время использование математических моделей является существенным фактором в широком диапазоне человеческой деятельности (в том числе в вопросах управления, планирования, прогнозирования и т.д.).
Изучение реальных явлений на основе анализа построенных моделей, как правило, требует развития
В качестве примера типовых математических задач, часто встречающихся в приложениях, можно назвать задачи алгебры: здесь большое значение имеют численные методы решения систем линейных алгебраических уравнений (в частности, больших систем), обращение матриц, нахождение собственных значений матриц (как нескольких первых значений — ограниченная проблема собственных значений, так и нахождение всех собственных значений — полная проблема собственных значений). Другие примеры — численные методы дифференцирования и интегрирования функций одного или нескольких переменных; численные методы решения обыкновенных дифференциальных уравнений (сюда включают, в частности, изучение и сравнительный анализ численных методов различных типов, например, Адамса, Рунге — Кутта). Значительное число исследований посвящено численным методам решения уравнений с частными производными. Здесь большое направление составляют «экономичные методы», т. е. методы, позволяющие получать результаты при относительно малом (экономном) числе операций.
Быстро развивающимся направлением В. м. являются численные методы оптимизации. Задача оптимизации состоит в изучении экстремальных (наибольших или наименьших) значений функционалов на множествах, как правило, весьма сложной структуры. В первую очередь следует упомянуть задачи