наблюдались на опыте; последним был открыт (1971) антиомега-Г. , или W+ (рис. 3).

  Сильное взаимодействие Г. Помимо сохранения странности, сильные взаимодействия Г. обладают определенной симметрией, называется изотопической инвариантностью. Эта симметрия была установлена ранее для нуклонов и p-мезонов и проявляется в том, что частицы группируются в некоторые семейства — изотонические мультиплеты [(р, n) и (p, p0, p+), где р означает протон, а n — нейтрон]. Частицы, входящие в определенный изотопический мультиплет, одинаково участвуют в сильном взаимодействии, имеют почти равные массы и отличаются лишь электромагнитными характеристиками (электрическими зарядами, магнитными моментами). Число частиц в изотопическом мультиплете характеризуется специальным квантовым числом — изотопическим спином I и равно 2I + 1. Г. образуют 4 изотопических мультиплета (см. табл.).

  Таблица гиперонов

L- гиперон (синглет) S-гиперон (триплет) X-гиперон (дуплет) W-гиперон (синглет)
Состав изотопического мультиплета L ° S + S0 S- X0 X- W-
Масса, Мэв 1115,6 1189,4 1192,5 1197,3 1314,7 1321,3 1672,4
Изотонический спин I 0 1 1/2 0
Странность S -1 -1 -2 -3
Время жизни, сек 2,52·10-10 0,80·10-10 По теоретическим оценкам 10-20 1,49·10-10 3,03·10-10 1,66·10-10 1,3·10-10
Основные схемы распада* L®°{ r+p- S+®{ r+p0 S0®L0+g S0® n+p- X0®L0+p0 X0®L0+p- W-®{ X0+p-
X-+p0
n+p0 n+p+ L0+K-

* В таблице не указаны распады гиперонов с испусканием лептонов; они составляют по порядку величины доли процента от основных способов распада.

  Предположение о существовании изотопических мультиплетов Г. позволило Гелл-Ману и Нишиджиме предсказать существование S0 и X0 до их экспериментального открытия.

  Г. L, S, X по ряду своих свойств аналогичны нуклонам. Эта аналогия послужила исходным пунктом в поисках симметрии сильных взаимодействий, более широкой, чем изотопическая инвариантность. Наибольший успех при этом имела т. н. унитарная симметрия (SU3-симметрия), на основе которой была создана систематика адронов. С помощью этой симметрии удалось, например, предсказать существование и свойства W-Г. (см. Элементарные частицы).

  Распады Г. Основные способы распада Г. указаны в табл. Распады Г. подчиняются следующим закономерностям: 1) DS = 1 — странность изменяется по абсолютной величине на единицу: исключение составляет распад S0 на L0 и фотон, S0 ® L0 + g, протекающий за счёт электромагнитного взаимодействия (отсюда и время жизни S0 должно быть ~ 10-20 сек, а не 10-10 сек) и поэтому не сопровождающийся изменением странности. Этот закон запрещает прямой распад Õ-Г. на нуклон и p-мезоны, т.к. при таком распаде странность изменилась бы на две единицы. Распад Õ-Г. происходит в два этапа: X ® L0 + p; L0 ® N + p (где N означает нуклон). Поэтому Õ-Г. называют каскадным. Каскадные распады претерпевают также W-Г.

  2)DQ = DS — в распадах с испусканием лептонов изменение заряда Q адронов равно изменению странности S. Этот закон запрещает, например, распад S+ ® n + m+ + n (m+ — положительный мюон, n — нейтрино).

  3) DI = 1/2 — изотопический спин меняется на 1/2. Это правило позволяет объяснить соотношения между вероятностями различных наблюдаемых способов распада Г.

  При взаимодействии быстрых частиц с ядрами могут возникать гипер-ядра, в которых один или несколько нуклонов в результате сильного взаимодействия превратились в Г.

  Лит.: Гелл-Манн М., Розенбаум П. Е., Элементарные частицы, в кн.: Элементарные частицы, пер. с англ., М., 1963 (Над чем думают физики, в. 2); Эдер Р. К., Фаулер Э. К., Странные частицы, пер. с англ., М., 1966; Фриш Д., Торндайк А., Элементарные частицы, пер. с англ., М., 1966.

  Л. Г. Ландсберг.

Рис. 1. Фотография (а) и схематическое изображение (б) случая парного рождения L°-гиперона и K°-мезона на протоне в жидководородной пузырьковой камере под действием p-мезона: p + p ®  L°  + K°. Эта реакция обусловлена сильным взаимодействием и разрешена законом сохранения странности (суммарная странность частиц в начальном и конечном состояниях одинакова и равна нулю). На снимке видны также распады L°-гиперона и K°-мезона под действием слабого взаимодействия: L° ® p + p , K° ® p+ + p (в каждом из этих процессов странность меняется на 1). Пунктирные линии на рис. б изображают пути нейтральных частиц, которые не оставляют следа в камере.

Рис. 3. Фотография (а) и схематическое изображение (б) случая рождения и распада антигиперона  (W+) в пузырьковой камере, наполненной жидким дейтерием и находящейся в магнитном поле. Антигиперон , имеющий положительный электрический заряд и странность S = +3, рождается (в точке 1) при столкновении K+-мезона (с энергией 12 Гэв) с ядром дейтерия в реакции K+ + d ®  + L° + L° + p + p+ + p-. Согласно законам сохранения барионного заряда В и (в сильном взаимодействии) странности S, рождение антибариона  (В = -1) на дейтроне (В = +2) сопровождается рождением трёх барионов: L°, L°, р (странность системы в начальном состоянии определяется странностью K+ и равна S = +1). Распады образовавшихся частиц происходят в результате слабого взаимодействия с изменением странности на 1. Один из возникших L° распадается (в точке 2) на р и p-, а другой L° выходит из камеры, не успев распасться (однако его наличие подтверждается законом сохранения энергии и импульса); антигиперон  распадается (в точке 3) на антилямбда-гиперон  и K+;  распадается (в точке 4) на антипротон  и p+,  (в точке 5) аннигилирует с протоном, образуя несколько p-мезонов.

Рис. 2. Фотография (а) и схематическое изображение (б) случая рождения и распада W-гиперона в пузырьковой камере, наполненной жидким водородом. Гиперон W рождается (в точке 1) при столкновении K -мезона с протоном в реакции K + p ®  W + K+ + K°, которая обусловлена сильным взаимодействием и разрешена законом сохранения странности S (в начальном и конечном состояниях S = - 1). Распады образовавшихся частиц происходят в результате слабого взаимодействия с изменением странности на 1: W ® X° + p- (в точке 2); X° ® L° + p° (в точке 3), причём p°, имеющий малое время жизни, распадается практически в той же точке 3 на два g-kванта, p° ® g1 + g2, которые рождают электронно-позитронные пары e+, e; L° ® p + p- (в точке 4). Треки частиц искривлены, так как камера находится в магнитном поле.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату