принадлежат обозначения постоянных
(от французского imaginaire — мнимый, 1777, опубликовано в 1794).
В 19 в. роль символики возрастает. В это время появляются знаки абсолютной величины |x| (К.
(А.
Наряду с указанным процессом стандартизации З. м. в современной литературе весьма часто можно встретить З. м., используемые отдельными авторами только в пределах данного исследования.
С точки зрения математической логики, среди З. м. можно наметить следующие основные группы: А) знаки объектов, Б) знаки операций, В) знаки отношений. Например, знаки 1, 2, 3, 4 изображают числа, т. е. объекты, изучаемые арифметикой. Знак операции сложения + сам по себе не изображает никакого объекта; он получает предметное содержание, когда указано, какие числа складываются: запись 1 + 3 изображает число 4. Знак > (больше) есть знак отношения между числами. Знак отношения получает вполне определённое содержание, когда указано, между какими объектами отношение рассматривается. К перечисленным трём основным группам З. м. примыкает четвёртая: Г) вспомогательные знаки, устанавливающие порядок сочетания основных знаков. Достаточное представление о таких знаках дают скобки, указывающие порядок производства действий.
Знаки каждой из трёх групп А), Б) и В) бывают двух родов: 1) индивидуальные знаки вполне определённых объектов, операций и отношений, 2) общие знаки «неременных», или «неизвестных», объектов, операций и отношений.
Примеры знаков первого рода могут служить (см. также таблицу):
A1) Обозначения натуральных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9; трансцендентных чисел
знаки суммы (объединения) È и произведения (пересечения) Ç множеств; сюда же относятся знаки индивидуальных функций sin, tg, log и т.п.
B1) Знаки равенства и неравенства =, >, <, ¹, знаки параллельности || и перпендикулярности ^, знаки принадлежности Î элемента некоторому множеству и включения Ì одного множества в другое и т.п.
Знаки второго рода изображают произвольные объекты, операции и отношения определённого класса или объекты, операции и отношения, подчинённые каким-либо заранее оговорённым условиям. Например, при записи тождества (
x2 — 1 = 0
С логической точки зрения, законно такого рода общие знаки называть знаками переменных, как это принято в математической логике, не пугаясь того обстоятельства, что «область изменения» переменного может оказаться состоящей из одного единственного объекта или даже «пустой» (например, в случае уравнений, не имеющих решения). Дальнейшими примерами такого рода знаков могут служить:
A2) Обозначения точек, прямых, плоскостей и более сложных геометрических фигур буквами в геометрии.
Б2) Обозначения
Знаки отличия нагрудные
Зна'ки отли'чия нагру'дные, в СССР одна из форм награждения граждан, способствующих своей деятельностью укреплению хозяйственной и оборонной мощи государства. Учреждаются Президиумом Верховного Совета СССР. В Положении о соответствующем З. о. н. указываются показатели, за достижение которых награждаются этим знаком. Награждение производится Президиумом Верховного Совета СССР по представлению Совета Министров СССР или, в соответствии с Положением о З. о. н., приказом соответствующего министерства или ведомства.
Установлены почётные знаки лауреата Ленинской премии и Государственной премии СССР, вручаемые лицам, получившим соответствующие премии (см.
Ряд З. о. н. учрежден в союзных республиках. Так, например, в РСФСР: «Почётный шахтёр», «Отличный дружинник», а также знаки, вручаемые лицам, которым присвоены звания «Заслуженный изобретатель республики» и «Заслуженный рационализатор республики» (см. в ст.
Знаки пограничные
Зна'ки пограни'чные, см. в ст.
Знаки препинания
Зна'ки препина'ния, элементы письменности, служащие для разграничения языковых единиц (смысловых отрезков текста, предложений, словосочетаний, слов, частей слова), для указания на синтаксические и логические отношения между словами, на коммуникативный тип предложения, его эмоциональную окраску, а также для внешней информации о тексте (указание на цитаты, незаконченность высказывания, графические сокращения и пр.). В русском письме и др. современных письменностях латинской и кириллической графики различаются З. п.: 1) на границах крупных смысловых отрезков текста (абзац, красная строка); 2) на границах предложений (.?!...), указывающие на их коммуникативный тип, эмоциональную окраску, степень законченности; 3) указывающие внутри предложения на отношение его частей (,;: —), в том числе двойные знаки, выделяющие словосочетания с обеих сторон: скобки, двойные запятые, двойные тире; 4) внутри слова, делящие слова на смысловые части (дефис) или слоги (дефис во вьетнамской латинице); 5) знаки, указывающие на цитирование и эмоциональное отношение к словам и словосочетаниям (например, кавычки); 6) знаки сокращений (точка, дефис, косая черта: например, «тов.», «к-рый», «п/о»). К З. п. функционально принадлежит и пробел — знак границы слов. Система З. п. современных письменностей: латинской, кириллической, греческой, арабской, еврейской, индийской — едина. Различия между языками касаются частностей: в испанской латинице вопросительный и восклицательный знаки охватывают предложение (или его часть) с обеих сторон (Dónde vas? — «Куда идёшь?», ¡Muy bien! — «Очень хорошо!»), в греческом письме «;» служит вопросительным знаком, а точка вверху строки соответствует двоеточию и точке с запятой. Система З. п. европейских языков восходит к александрийским грамматикам 2—1 вв. до н. э. (Аристофан Византийский, Аристарх, Дионисий Фракийский) и получила современный вид в конце 15 в. (система Альда Мануция). В др. системах письма древности и современности З. п. иные. Наиболее распространены знаки словораздела (пробел во многих