«давление» естественного отбора. Одна из важнейших задач И. — установление факторов, обусловливающих распространение в популяциях новых аллелей. Таким фактором может служить сходство в строении антигенов у болезнетворных микроорганизмов и макроорганизма. Животные в норме не вырабатывают антител к собственным антигенам, поэтому сходство в антигенном строении между каким-либо компонентом микробной клетки и той или иной молекулой макроорганизма приведёт к тому, что последний не сможет синтезировать антитела, обезвреживающие данный вид микроба. В связи с этим снижаются защитные силы макроорганизма. Поэтому отбор будет подхватывать появление видоизменённых молекул белков (или полисахаридов), повышая тем самым иммунную устойчивость организма. Распространение в популяции новых аллелей может происходить также и в тех случаях, когда в результате мутации соответствующего гена молекула макроорганизма изменяется так, что ферментативные системы микроба уже не могут её использовать в качестве субстрата. Иногда для этого достаточно замены одной аминокислоты в полипептидной цепи, как это имеет место у некоторых мутантных форм гемоглобина. Такие формы распространились в районах земного шара, где высока заболеваемость малярией: носители мутантного гемоглобина не болеют малярией, так как малярийный плазмодий неспособен использовать его в качестве субстрата. В ряде случаев распространяются мутации, которые изменяют биохимию клетки или органа в целом и тем самым нарушают приспособленность паразита. По-видимому, существуют и другие механизмы наследственного иммунитета, благодаря которым достигается наследственная гетерогенность вида-хозяина, препятствующая распространению паразитического штамма микроорганизма.
Таким образом, степень естественной устойчивости к заболеванию животных данного вида определяется многими факторами, суммарно отражая особенности конституции и животного, и возбудителя заболевания. Трёхмерная модель этих взаимоотношений представлена на рис., где показано, что процент особей, выживших после инфекции, зависит как от наследственной устойчивости организма к возбудителю заболевания, так и от вирулентности последнего.
Наследственная устойчивость к заболеваниям, как правило, специфична, так как физиологические основы устойчивости к разным заболеваниям обычно неодинаковы. Так, африканский скот зебу, прекрасно переносящий жару и устойчивый к туберкулёзу очень чувствителен к трипаносомозу; линия белых леггорнов, устойчивая к моноцитозу кур, чувствительна к куриному лейкозу; линии мышей, устойчивые к мышиному тифу, чрезвычайно восприимчивы к вирусу ложного бешенства. С древнейших времён генетическая устойчивость отдельных особей, пород, рас и т. д. к заболеваниям служила предпосылкой для селекции. Так были выведены овцы породы ромни-марш, устойчивые к трихостронгилидам, раса кроликов, устойчивая к миксоматозу, и медоносные пчёлы, устойчивые к американскому гнильцу. Естественный отбор на устойчивость существовал и среди людей. Так, после открытия Нового Света оказалось, что индейцы Северной Америки более чувствительны к кори и ветряной оспе, чем европейцы, для которых эти заболевания были привычны и легко переносимы.
В основе генетической устойчивости к заболеваниям лежат разнообразные механизмы, в том числе и неиммунологические. Белые леггорны, например, устойчивы к белому поносу потому, что имеют более совершенную терморегуляцию; устойчивость скота зебу к клещевым заболеваниям обусловлена более толстой кожей и особенностями кожных выделений, которые отпугивают клещей. Чувствительность к оспе у лиц с группами крови А и AB связана с общностью антигена А человека и антигенов вируса оспы. Поэтому лица с группами крови В и О(Н) легче переносят оспу.
Перенесение генетических представлений в область иммунологии позволило советскому учёному В. П. Эфроимсону сформулировать эволюционно- генетическую концепцию иммуногенеза, объясняющую внутривидовое антигенное разнообразие и гетерогенность антител по специфичности. Каждая здоровая зрелая в иммунологическом отношении особь способна к иммунному ответу на тканевые антигены особи с другим генотипом. Таким образом, тканевая несовместимость — универсальная биологическая закономерность. Лишь однояйцевые близнецы и животные одной чистой линии не разделены барьером тканевой несовместимости, выраженность которой зависит от степени несходства генотипов донора и реципиента. Для успешных пересадок органов и тканей, переливаний крови и клеток костного мозга очень важно снизить до минимума величину этого несходства путём подбора совместимого донора. Изучение клеточных антигенов, их наследования и разнообразия, их обнаружение (типирование) — это те разделы И. , которые особенно важны для трансплантологии, трансфузиологии, иммуногематологии и клинической иммунологии. См. также Иммунология.
Лит.: Медведев Н. Н., Линейные мыши, Л., 1964; Хатт Ф., Генетика животных. пер. с англ., М., 1969; Эфроимсон В. П., Иммуногенетика, М., 1971; Hildemann W. Н., Immunogenetics, San Francisco, 1970.
А. Н. Мац, О. В. Рохлин.
Трёхмерное изображение зависимости жизнеспособности макроорганизма от его устойчивости к патогенным агентам и от вирулентности возбудителя.
Иммуноглобули'ны (Ig), глобулярные белки, содержащиеся в сыворотке крови позвоночных животных и человека. И. образуют группу близких по химической природе соединений, в состав которых входят также углеводы. По-видимому, все И. являются антителами к каким-либо антигенам. Известно 5 классов И. человека: G, М, A, D, Е (см. табл.). Наиболее полно изучены И. класса G (IgG). Их молекулы построены из двух идентичных лёгких (молекулярная масса 22000) и двух идентичных тяжёлых (молекулярная масса 55000— 70000) полипептидных цепей, скрепленных дисульфидными связями (см. рис.). При расщеплении протеолитическими ферментами (например, папаином) молекула И. распадается на три части: два одинаковых фрагмента (обозначаются Fab), каждый из которых сохраняет способность к связыванию с антигеном, и фрагмент (обозначается Fc), способствующий прохождению И. через биологические мембраны. Все три фрагмента соединены короткими гибкими участками, расположенными в середине тяжёлой цепи. Гибкость позволяет молекулам И. оптимально присоединяться к антигенам, имеющим разное пространственное строение. Участки молекулы, ответственные за связывание с антигеном (активный центр), образованы N-кoнцевыми (несут на конце аминогруппу — NH2) отрезками тяжёлых и лёгких цепей. Последовательность аминокислот в этих отрезках специфична для каждого IgG, в других участках цепей она почти не варьирует. На основании различий в строении тяжёлых цепей И. относят к определённым классам.
Особенности разных классов иммуноглобулинов здорового человека
Класс иммуноглобулина | Молекулярная масса | Содержание углеводов, % | Содержание в сыворотке, мг % |
lgG | 140 000 | 2 | 800- 1680 |
lgM | 900 000 | 10 | 50-190 |
lgA | 170 000 и выше | 7 | 140-420 |
lgD | 180 000 | 12 | 3-40 |
lgE | 196 000 | 10 | 0,01-0,14 |
Большинство антител находится главным образом среди IgG (применяемые в лечебных целях препараты гамма- глобулинов состоят преимущественно из IgG). IgM эволюционно наиболее древние И.; они синтезируются на первых стадиях иммунной реакции. Их молекулы состоят из 5 мономерных субъединиц, каждая из которых напоминает молекулу IgG. Для IgA характерна способность проникать в различные секреты (слюну, молозиво, кишечный сок), где они встречаются в полимерной форме. Антитела, участвующие в аллергических реакциях (см. Аллергия), относятся к недавно открытым IgE.
И. синтезируются лимфатическими клетками. При некоторых поражениях этих клеток в крови и моче накапливается большое количество так называемых миеломных И., которые, в отличие от И. здорового организма, однородны по составу. См. также Иммунология и Иммуногенетика.
Лит.: Гауровиц