Кроме этого, он играет большую эвристическую роль, т.к. многие результаты К. м. могут быть получены и поняты на основе комбинации законов классической механики с соотношением неопределённостей. Важным примером является проблема устойчивости атома, о которой говорилось выше. Рассмотрим эту задачу для атома водорода. Пусть электрон движется вокруг ядра (протона) по круговой орбите радиуса r со скоростью u. По закону Кулона сила притяжения электрона к ядру равна e2/r2, где е — абсолютная величина заряда электрона, а центростремительное ускорение равно u2/r. По второму закону Ньютона mu2r = e2/r2, где m — масса электрона. Отсюда следует, что радиус орбиты r = е2/mu2 может быть сколь угодно малым, если скорость u достаточно велика. Но в К. м. должно выполняться соотношение неопределённостей. Если допустить неопределённость положения электрона в пределах радиуса его орбиты r, а неопределённость скорости — в пределах u, т. е. импульса в пределах Dр = mu, то соотношение неопределённостей примет вид: . Воспользовавшись связью между u и r, определяемой законом Ньютона, получим  и . Следовательно, движение электрона по орбите с радиусом, меньшим  см, невозможно, электрон не может упасть на ядро — атом устойчив. Величина r0 и является радиусом атома водорода («боровским радиусом»). Ему соответствует максимально возможная энергия связи атома E0 (равная полной энергии электрона в атоме, т. е. сумме кинетической энергии mu2/2 и потенциальной энергии — e2/r0, что составляет E0 » -13,6 эв), определяющая его минимальную энергию — энергию основного состояния.

  Т о., квантовомеханические представления впервые дали возможность теоретически оценить размеры атома (выразив его радиус через мировые постоянные , m, е). «Малость» атомных размеров оказалась связанной с тем, что «мала» постоянная .

  Примечательно, что современные представления об атомах, обладающих вполне определёнными устойчивыми состояниями, оказываются ближе к представлениям древних атомистов, чем основанная на законах классической механики планетарная модель атома, позволяющая электрону находиться на любых расстояниях от ядра.

  Строгое решение задачи о движении электрона в атоме водорода получается из квантовомеханического уравнения движения — уравнения Шрёдингера (см. ниже); решение уравнения Шрёдингера даёт волновую функцию y, которая описывает состояние электрона, находящегося в области притяжения ядра. Но и не зная явного вида y, можно утверждать, что эта волновая функция представляет собой такую суперпозицию волн де Бройля, которая соответствует локализации электрона в области с размером ³ r0 и разбросу по импульсам .

  Соотношение неопределённостей позволяет также понять устойчивость молекул и оценить их размеры и минимальную энергию, объясняет существование вещества, которое ни при каких температурах не превращается при нормальном давлении в твёрдое состояние (гелий), даёт качественное представления о структуре и размерах ядра и т.д.

  Существование уровней энергии — характерное квантовое явление, присущее всем физическим системам, не вытекает непосредственно из соотношения неопределённостей. Ниже будет показано, что дискретность уровней энергии связанной системы можно объяснить на основе уравнения Шрёдингера; отметим лишь, что возможные дискретные значения энергии (энергетические уровни) En > E0 соответствуют возбуждённым состояниям квантовомеханической системы (см., например, Атом).

  Стационарное уравнение Шрёдингера. Волны де Бройля описывают состояние частицы только в случае свободного движения. Если на частицу действует поле сил с потенциальной энергией V (называемой также потенциалом), зависящей от координат частицы, то волновая функция частицы y определяется дифференциальным уравнением, которое получается путём следующего обобщения гипотезы де Бройля. Для случая, когда движение частицы с заданной энергией E происходит в одном измерении (вдоль оси х), уравнение,. которому удовлетворяет волна де Бройля (5), может быть записано в виде:

,     (*)

где  — импульс свободно движущейся частицы (массы m). Если частица с энергией E движется в потенциальном поле V (x), не зависящем от времени, то квадрат её импульса (определяемый законом сохранения энергии) равен . Простейшим обобщением уравнения (*) является поэтому уравнение

.     (7)

  Оно называется стационарным (не зависящим от времени) уравнением Шрёдингера и относится к основным уравнениям К. м. Решение этого уравнения зависит от вида сил, т. е. от вида потенциала V (x). Рассмотрим несколько типичных случаев.

  1) V = const, E > V. Решением является волна де Бройля y = Ceikx, где  E - V — кинетическая энергия частицы.

  2) Потенциальная стенка:

  V = 0 при х < 0,

  V = V1 > 0 при х > 0.

  Если полная энергия частицы больше высоты стенки, т. е. E > V1, и частица движется слева направо (рис. 3), то решение уравнения (7) в области x < 0 имеет вид двух волн де Бройля — падающей и отражённой:

,

где

(волна с волновым числом k = – k0 соответствует движению справа налево с тем же импульсом p0), а при х > 0 проходящей волны де Бройля:

, где .

  Отношения | C1/C2|2 и | C'0/C0|2 определяют вероятности прохождения частицы над стенкой и отражения от неё. Наличие отражения — специфически квантовомеханическое (волновое) явление (аналогичное частичному отражению световой волны от границы раздела двух прозрачных сред): «классическая» частица проходит над барьером, и лишь импульс её уменьшается до значения .

  Если энергия частицы меньше высоты стенки, E < V (рис. 4, а), то кинетическая энергия частицы E V в области х > 0 отрицательна. В классической механике это невозможно, и частица не заходит в такую область пространства — она отражается от потенциальной стенки. Волновое движение имеет др. характер. Отрицательное значение  означает, что k — чисто мнимая величина, k = ic, где c вещественно. Поэтому волна eikx превращается в ecx, т. е. колебательный режим сменяется затухающим (c > 0, иначе получился бы лишённый физического смысла неограниченный рост

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату