В связи с этим большое развитие получили полуэмпирические квантовохимические расчёты. Эти расчёты также восходят к уравнению Шрёдингера, но вместо того чтобы вычислять огромное количество (миллионы) интегралов, большую часть из них опускают (руководствуясь порядком их малости), а остальные упрощают. Потерю точности компенсируют соответствующей калибровкой параметров, которые берутся из эксперимента. Полуэмпирические расчёты пользуются большой популярностью, ибо оптимальным образом сочетают в себе простоту и точность в решении различных проблем.
Описанные выше расчёты нельзя непосредственно сравнивать с чисто теоретическими (неэмпирическими) расчётами, так как у них разные возможности, а отсюда и разные задачи. Ввиду специфики используемых параметров при полуэмпирическом подходе нельзя надеяться получить волновую функцию, удовлетворительно описывающую различные (а тем более все) одноэлектронные свойства. В этом состоит коренное отличие полуэмпирических расчётов от расчётов неэмпирических, которые могут, хотя бы в принципе, привести к универсальной волновой функции. Поэтому сила и привлекательность полуэмпирических расчётов заключаются не в получении количественной информации как таковой, а в возможности интерпретации получаемых результатов в терминах физико- химических концепций. Только такая интерпретация и приводит к действительному пониманию, так как без неё на основании расчёта можно лишь констатировать те или иные количественные характеристики явлений (которые надёжнее определить на опыте). Именно в этой специфической особенности полуэмпирических расчётов и заключается их непреходящая ценность, позволяющая им выдерживать конкуренцию с полными неэмпирическими расчётами, которые по мере развития вычислительной техники становятся всё более легко осуществимыми.
Что касается точности полуэмпирических квантовохимических расчётов, то она (как и при любом полуэмпирическом подходе) зависит скорее от умелой калибровки параметров, нежели от теоретической обоснованности расчётной схемы. Так, если выбирать параметры из оптических спектров каких-то молекул, а затем рассчитывать оптические спектры родственных соединений, то нетрудно получить великолепное согласие с экспериментом, но такой подход не имеет общей ценности. Поэтому основная проблема в полуэмпирических расчётах заключается не в том, чтобы вообще определить параметры, а в том, чтобы одну группу параметров (например, полученных из оптических спектров) суметь использовать для расчётов др. характеристик молекулы (например, термодинамических). Только тогда появляется уверенность, что работа ведётся с физически осмысленными величинами, имеющими некое общее значение и полезными для концепционного мышления.
Кроме количественных и полуколичественных расчётов, современная К. х. включает ещё большую группу результатов качественного рассмотрения. Зачастую удаётся получать весьма убедительную информацию о строении и свойствах молекул без всяких громоздких расчётов, используя различные фундаментальные концепции, основанные главным образом на рассмотрении симметрии.
Соображения симметрии играют важную роль в К. х., так как позволяют контролировать физический смысл результатов приближённого рассмотрения многоэлектронных систем. Например, исходя из точечной группы симметрии молекулы, можно вполне однозначно решить вопрос об орбитальном вырождении электронных уровней независимо от выбора расчётного приближения. Знание степени орбитального вырождения часто уже достаточно для суждения о многих важных свойствах молекулы, таких как потенциалы ионизации, магнетизм, конфигурационная устойчивость и ряд других. Принцип сохранения орбитальной симметрии лежит в основе современного подхода к механизмам протекания согласованных химических реакций (правила Вудворда — Гофмана). Указанный принцип может быть, в конечном счёте, выведен из общего топологического рассмотрения областей связывания и антисвязывания в молекуле.
Следует иметь в виду, что современная химия имеет дело с миллионами соединений и её научный фундамент не является монолитным. В одних случаях успех достигается уже при использовании чисто качественных представлений К. х., в других — весь её арсенал оказывается недостаточным. Поэтому, оценивая современное состояние К. х., всегда можно привести много примеров, свидетельствующих как о силе, так и о слабости современной квантовохимической теории. Ясно лишь одно: если раньше уровень квантовохимических работ ещё мог определяться технической сложностью применённого расчётного аппарата, то теперь доступность ЭВМ выдвигает на первый план физико- химическую содержательность исследований. С точки зрения внутренних интересов К. х. наибольшую ценность, вероятно, представляют попытки выйти за пределы одноэлектронного приближения. В то же время для утилитарных целей в различных областях химии одноэлектронное приближение таит ещё много неиспользованных возможностей. См. также
Квантовая эволюция
Ква'нтовая эволю'ция, форма эволюции группы организмов, связанная с резким переходом её из одной
Квантовая электродинамика
Ква'нтовая электродина'мика, квантовая теория электромагнитных процессов; наиболее разработанная часть
К. э. количественно объясняет эффекты взаимодействия излучения с веществом (испускание, поглощение и рассеяние), а также последовательно описывает электромагнитные взаимодействия между заряженными частицами. К числу важнейших проблем, которые не нашли объяснения в классической электродинамике, но успешно разрешаются К. э., относятся тепловое излучение тел, рассеяние рентгеновских лучей на свободных (точнее, слабо связанных) электронах (