, ..., xn (которые могут принимать любые действительные значения); расстояние r между двумя точками M (x 1 , x 2 , ..., xn ) и М' (у 1 , y 2 , ..., y n ) определяется формулой

аналогичной формуле расстояния между двумя точками обычного евклидова пространства. С сохранением такой же аналогии обобщаются на случай n -мерного пространства и другие геометрические понятия. Так, в М. п. рассматриваются не только двумерные плоскости, но и k -мерные плоскости (k < n ), которые, как и в обычном евклидовом пространстве, определяются линейными уравнениями (или системами таких уравнений).
Понятие n -мерного евклидова пространства имеет важные применения в теории функций многих переменных, позволяя трактовать функцию n переменных как функцию точки этого пространства и тем самым применять геометрические представления и методы к изучению функций любого числа переменных (а не только одного, двух или трёх). Это и было главным стимулом к оформлению понятия n -мерного евклидова пространства.
Важную роль играют и другие М. п. Так, при изложении физического принципа относительности пользуются четырёхмерным пространством, элементами которого являются т. н. «мировые точки». При этом в понятии «мировой точки» (в отличие от точки обычного пространства) объединяется определённое положение в пространстве с определённым положением во времени (поэтому «мировые точки» и задаются четырьмя координатами вместо трёх). Квадратом «расстояния» между «мировыми точками» М’ (х’, y’, z’, t’ ) и М’’ (х’’, y’’, z’’, t’’ ) (где первые три «координаты» — пространственные, а четвёртая — временная) естественно считать здесь выражение
(M’ M’’ )2 = (x’ - x’’ )2 + (y’ — y’’ )2 + (z’ — z’’ )2 — c2 (t’ — t’’ )2 ,
где с — скорость света. Отрицательность последнего члена делает это пространство «псевдоевклидовым».
Вообще n -мерным пространством называется топологическое пространство, которое в каждой своей точке имеет размерность n . В наиболее важных случаях это означает, что каждая точка обладает окрестностью, гомеоморфной открытому шару n -мерного евклидова пространства.
Подробнее о развитии понятия М. п., геометрии М. п., а также лит. см. в ст. Геометрия .
Многому'жество, см. Полиандрия .
Многоно'жки (Myriapoda), общее название 4 классов наземных членистоногих животных: губоногих , двупарноногих , симфил и пауропод ; прежде считались одним классом. Тело М. состоит из головы и более или менее длинного сегментированного туловища. Усиков 1 пара; ноги имеются на всех (или почти на всех) туловищных сегментах. Около 11 тыс. видов; в СССР около 1000 видов. Обитают в почве, лесной подстилке, гнилой древесине. Питаются гниющими растительными остатками (двупарноногие, симфилы), мицелием грибов (пауроподы); некоторые — хищники (губоногие).
Многоно'жковые (Polypodiaceae), семейство растений из класса папоротников. Многолетники с ползучими или иногда