Многозна'чная ло'гика, раздел математической логики , изучающий математические модели логики высказываний . Эти модели отражают две основные черты последней — множественность значений истинности высказываний и возможность построения новых, более сложных высказываний из заданных при помощи логических операций, которые позволяют также по значениям истинности исходных высказываний устанавливать значение истинности сложного высказывания. Примерами многозначных высказываний являются суждения с модальным исходом («да», «нет», «может быть») и суждения вероятностного характера, а примерами логических операций — логической связки типа «и», «или», «если..., то». В общем случае модели М. л. представляют собой обобщения алгебры логики . Важно отметить, что в алгебре логики высказывания принимают только два значения истинности («да», «нет»), в связи с чем она в общем случае не может отразить всего многообразия логических построений, встречающихся на практике. При достаточно широком толковании М. л. в неё иногда включают также логические исчисления .
Исторически первыми моделями М. л. явились двузначная логика Дж. Буля (называемая также алгеброй логики), трёхзначная логика Я. Лукасевича (1920) и m -значная логика Э. Поста (1921). Изучение этих моделей составило важный этап в создании теории М. л. М. л. обладает определённой спецификой, состоящей в рассмотрении задач и подходов, возникающих при исследовании М. л. с позиций математической логики, теоретической кибернетики и алгебры . Так, с позиций теоретической кибернетики, модели М. л. рассматриваются как языки, описывающие функционирование сложных управляющих систем, компоненты которых могут находиться в некотором числе различных состояний; а с точки зрения алгебры, модели М. л. представляют собой алгебраические системы, имеющие наряду с прикладным и чисто теоретический интерес.
Построение моделей М. л. осуществляется по аналогии с построением двузначной логики. Так, индивид, высказывания логики, разбитые на классы с одним и тем же значением истинности, приводят к понятию множества Е — констант модели, которые фактически отождествляют все индивидуальные высказывания, заменяя их соответствующими значениями истинности; переменные высказывания — к переменным величинам x 1 , x 2 , ..., которые в качестве значений принимают элементы из множества Е ; логической связки — к множеству М элементарных функций (операций), которые, как и их аргументы, принимают значения из Е . Сложные высказывания, построенные из индивидуальных и переменных высказываний, а также логических связок, приводят к множеству <М > формул над М . Значение истинности из Е сложного высказывания является функцией от соответствующих значений истинности высказываний, входящих в данное сложное высказывание. В модели эта функция приписывается формуле, соответствующей данному сложному высказыванию; говорят также, что формула реализуют эту функцию. Множество формул <М > приводит к множеству [М ] функций, реализуемых формулами из <М > и называемых суперпозициями над М . Множество [М ] называется замыканием множества М . Задание конкретной модели М. л. считается эквивалентным указанию множеств Е, М , <М > и [М ]; при этом говорят, что модель порождается множеством М . Эта модель называется формульной моделью, а также m -значной логикой, где m обозначает мощность множества Е .
Своеобразие подхода математической кибернетики к М. л. состоит в рассмотрении моделей М. л. как управляющих систем. Элементарные функции при этом являются элементами, производящими определённые операции, а формулы интерпретируются как схемы, построенные из элементов и также осуществляющие переработку входной информации в выходную. Такого рода управляющие системы,