лазерном (когерентном), так и в некогерентном режимах, кабели со световолоконными жилами и полупроводниковые приёмники, можно построить магистрали связи на тысячи телефонных каналов с ретрансляторами, располагаемыми на расстояниях около 10 км друг от друга. Интенсивные работы по созданию лазерных излучателей со сроками службы ~10—100 тыс. ч , разработка широкополосных высокочувствительных приёмных устройств, более эффективных световодных структур и технологии изготовления световодов большой протяжённости, по-видимому, сделают О. с. конкурентоспособной со связью по существующим кабельным и релейным магистралям уже в ближайшем десятилетии. Можно ожидать, что О. с. займёт важное место в общегосударственной сети связи наряду с др. средствами. В перспективе системы О. с. со световодными линиями по своим информационным возможностям и стоимости на единицу информации могут стать основным видом магистральной и внутригородской связи.
Лит.: Чернышев В. Н., Шереметьев А. Г., Кобзев В. В., Лазеры в системах связи, М., [1966]; Пратт В. К., Лазерные системы связи, пер. с англ., М., 1972; Применение лазеров, пер. с англ., М., 1974.
А. В. Иевский, М. Ф. Стельмах.
Опти'ческая си'ла , характеризует преломляющую способность осесимметричных линз и систем таких линз. О. с. есть величина, обратная фокусному расстоянию системы: j= n ’/f ’ = –n /f , где n ’ и n — преломления показатели сред, расположенных соответственно за и перед системой; f и f ’ — заднее и переднее фокусные расстояния системы, отсчитываемые от её главных плоскостей (см. Кардинальные точки оптической системы). Для системы, находящейся в воздухе (n = n ’ » 1), j равна 1/f ’. Следовательно, О. с. системы (или отдельной линзы) тем больше, чем сильнее эта система преломляет лучи света (чем меньше её фокусное расстояние). О. с. измеряется в диоптриях (м –1 ); она положительна для собирающих систем и отрицательна для рассеивающих. Особенно широко понятием О. с. пользуются в диоптрике глаза и очковой оптике (см. также Линза , Очки ).
Опти'ческая теоре'ма , устанавливает связь между уменьшением интенсивности волны, распространяющейся в среде, и полным сечением рассеяния этой волны. О. т. первоначально была сформулирована в физической оптике и выражала мнимую часть показателя преломления (описывающую поглощение света) через полное сечение рассеяния света на рассеивающих центрах — осцилляторах. В квантовой механике О. т. вытекает из т. н. условия унитарности (условия равенства единице полной вероятности всех возможных процессов, происходящих в системе) и связывает мнимую часть амплитуды упругого рассеяния вперёд, Imf (0), с полным сечением s рассеяния частицы (на силовом центре или на др. частице):
Imf (0) = 
(р — импульс налетающей частицы в системе центра инерции). О. т. используется для установления связи между непосредственно измеряемыми на опыте характеристиками рассеяния частиц.
В. П. Павлов.
Опти'ческая толщина' (оптическая толща) среды t, безразмерная величина, характеризующая ослабление оптического излучения в среде за счёт совместного действия поглощения света и рассеяния света (но без учёта эффектов усиления излучения, обусловленного многократным рассеянием). Для оптически однородной среды t = el , где e — объёмный ослабления показатель среды (равный сумме показателей поглощения и рассеяния), l — геометрическая длина пути светового луча в ней; в неоднородной среде, в которой e зависит от координат, t = òedl (интегрирование производится вдоль пути луча света). Через О. т. записывается модифицированный закон Бугера (см. Поглощение света ), учитывающий, помимо поглощения света, и его рассеяние: F = F 0 e –1