определитель соответствующей ортогональной матрицы равен +1. Если же этот определитель равен —1, то поворот дополняется зеркальным отражением относительно плоскости, проходящей через О и перпендикулярной оси поворота. В двумерном пространстве, т. е. в плоскости, О. п. определяет поворот на некоторый угол вокруг начала координат О или зеркальное отражение относительно некоторой прямой, проходящей через О. Используется О. п. при приведении к главным осям квадратичной формы. См. также Матрица, Векторное пространство.

Ортогональность

Ортогона'льность (греч. orthogōnios — прямоугольный, от orthós — прямой и gōnía — угол), обобщение (часто синоним) понятия перпендикулярности. Если два вектора в трёхмерном пространстве перпендикулярны, то их скалярное произведение равно нулю. Это позволяет обобщить понятие перпендикулярности, распространив его на векторы в любом линейном пространстве, в котором определено скалярное произведение, обладающее обычными свойствами (см. Гильбертово пространство), назвав два вектора ортогональными, если их скалярное произведение равно нулю. В частности, вводя скалярное произведение в пространстве комплекснозначных функций, заданных на отрезке [а, b ] формулой

,

где r (х) ³ 0, называют две функции f (x) и j(x), для которых (f, j) r = 0, то есть

,

ортогональными с весом r(х). Два линейных подпространства называется ортогональными, если каждый вектор одного из них ортогонален каждому вектору другого. Это понятие обобщает понятие перпендикулярности двух прямых или прямой и плоскости в трёхмерном пространстве (но не понятие перпендикулярности двух плоскостей). Термином ортогональные кривые обозначают кривые линии, пересекающиеся под прямым углом (измеряется угол между касательными в точке пересечения). См., например, ортогональные траектории в ст. Изогональные траектории.

Ортогональные многочлены

Ортогона'льные многочле'ны, специальные системы многочленов {рп (х)}; n = 0, 1, 2,..., ортогональных с весом r (х) на отрезке [а, b ] (см. Ортогональная система функций). Нормированная система О. м. обозначается через , а система О. м., старшие коэффициенты которых равны 1,— через . В краевых задачах математической физики часто встречаются системы О. м., для которых вес r(х) удовлетворяет дифференциальному уравнению (Пирсона)

Многочлен рп (х) такой системы удовлетворяет дифференциальному уравнению

где gn =n [(a1 + (n + 1)b2].

  Наиболее важные системы О. м. (классические) относятся к этому типу; они получаются (с точностью до постоянного множителя) при указанных ниже а, b и r(х).

  1) Якоби многочлены {Рп (l,m)(х)} — при а = —1, b = 1 r(х) = (1— х)l (1 + x)m, l > —1, m > —1. Специальные частные случаи многочленов Якоби соответствуют следующим значениям l и m: l = m— ультрасферические многочлены  (их иногда называют многочленами Гегенбауэра); l = m = — 1/2, т. е.  — Чебышева многочлены 1-го рода Tn (x); l = m = 1/2, т. е.  — Чебышева многочлены 2-го рода Un (x); l = m = 0, т. е. r(х) º 1 — Лежандра многочлены Рп (х).

  2) Лагерра многочлены Ln (x) — при а = 0, b = + ¥ и r(х) = е—х (их наз. также многочленами Чебышева — Лагерра) и обобщённые многочлены Лагерра  — при .

  3) Эрмита многочлены Нn (х) — при а = —¥, b = + ¥ и  (их называют также многочленами Чебышева — Эрмита).

  О. м. обладают многими общими свойствами. Нули многочленов рn (х) являются действительными и простыми и расположены внутри [а, b ]. Между двумя последовательными нулями многочлена рn (х) лежит один нуль многочлена pn+1 (х). Многочлен рn (х) может быть представлен в виде т. н. формулы Родрига

где An — постоянное, а b(х) см. формулу (*). Каждая система О. м. обладает свойствами замкнутости. Три последовательных О. м. , ,  связаны рекуррентным соотношением:

,

где ап+2 и ln+2 следующим образом выражаются через коэффициенты этих многочленов: если

,

то

;

  Общая теория О. м. построена П. Л. Чебышевым. Основным аппаратом изучения О. м. явилось для него разложение интеграла  в непрерывную дробь с элементами вида хan и числителями ln— 1. Знаменатели jn (х)/рn (х) подходящих дробей этой непрерывной дроби образуют систему О. м. на отрезке [a, b ] относительно веса r(х).

  Приведённые выше классические системы О. м. выражаются через гипергеометрическую функцию.

  Лит.: Сеге Г., Ортогональные многочлены, пер. с англ., М., 1962; см. также лит. при ст. Ортогональная система функций.

  В. И. Битюцков.

Ортогональные траектории

Ортогона'льные траекто'рии, см. в ст. Изогональные траектории.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату