их эрозии. Когда этот процесс по технологическим соображениям полезен, его интенсифицируют (П. с расходуемыми электродами); в др. случаях, напротив, минимизируют, изготовляя электроды из тугоплавких материалов (вольфрам, молибден, спец. сплавы) и (или) охлаждая их водой, что, кроме того, увеличивает срок службы электродов. Более «чистую» плазму дают ВЧ плазматроны (см. ниже).

  П. с плазменной струёй обычно используют при термической обработке металлов, для нанесения покрытий, получения порошков с частицами сферической формы, в плазмохимической технологии и пр.; П. с внешней дугой служат для обработки электропроводных материалов; П. с расходуемыми электродами применяют при работе на агрессивных плазмообразующих средах (воздухе, воде и др.) и при необходимости генерации металлической, углеродной и т.д. плазмы из материала электродов (например, при карботермическом восстановлении руд).

  Мощности дуговых П. 102107 вт; температура струи на срезе сопла 3000—25 000 К; скорость истечения струи 1—104 м/сек; промышленное кпд 50—90%; ресурс работы (определяется эрозией электродов) достигает несколько сотен ч, в качестве плазмообразующих веществ используют воздух, N2, Ar, H2, NH4, O2, H2O, жидкие и твёрдые углеводороды, металлы, пластмассы.

  Высокочастотный П. включает: электромагнитную катушку-индуктор или электроды, подключенные к источнику высокочастотной энергии, разрядную камеру, узел ввода плазмообразующего вещества. Различают индукционные, ёмкостные, факельные (см. Факельный разряд), П. на коронном разряде и с короной высокочастотной, а также сверхвысокочастотные (СВЧ) П. (рис. 2). Наибольшее распространение в технике получили индукционные ВЧ плазматроны, в которых плазмообразующий газ нагревается вихревыми токами. Т. к. индукционный высокочастотный разряд является безэлектродным, эти П. используют для нагрева активных газов (O2, Cl2, воздуха и др.), паров агрессивных веществ (хлоридов, фторидов и др.), а также инертных газов, если к плазменной струе предъявляются высокие требования по чистоте. С помощью индукционных П. получают тонкодисперсные и особо чистые порошковые материалы на основе нитридов, боридов, карбидов и др. химических соединений. В плазмохимических процессах объём разрядной камеры таких П. может быть совмещен с реакционной зоной (см. Плазменный реактор). Мощность П. достигает 1 Мвт, температура в центре разрядной камеры и на начальном участке плазменной струи ~ 104 К, скорость истечения плазмы 0—103 м/сек, частоты — от нескольких десятков тыс. гц до десятков Мгц, промышленное кпд 50— 80%, ресурс работы до 3000 ч. В СВЧ плазматроне рабочие частоты составляют тысячи и десятки тыс. Мгц; в качестве питающих их генераторов применяются магнетроны. ВЧ плазматроны всех типов, кроме индукционных, применяются (70-е гг. 20 в.) главным образом в лабораторной практике. В ВЧ плазматроне, как и в дуговых, часто используют газовую «закрутку», изолирующую разряд от стенок камеры. Это позволяет изготовлять камеры ВЧ плазматрона из материалов с низкой термостойкостью (например, из обычного или органического стекла).

  Для пуска П., т. е. возбуждения в нём разряда, применяют: замыкание электродов, поджиг вспомогательного дугового разряда, высоковольтный пробой межэлектродного промежутка, инжекцию в разрядную камеру плазмы и др. способы. Основные тенденции развития П.: разработка специализированных П. и плазменных реакторов для металлургической, химической промышленностей, повышение мощности в одном агрегате до 1—10 Мвт, увеличение ресурса работы и т.д.

  Лит.: Генераторы низкотемпературной плазмы, М., 1969; Жуков М. Ф., Смоляков В. Я., Урюков Б. А., Электродуговые нагреватели газа (Плазмотроны), М., 1973; Физика и техника низкотемпературной плазмы, под ред. С. В. Дресвина, М., 1972.

  А. В. Николаев. Л. М. Сорокин.

Рис. 1. Схема дуговых плазматронов: а — осевой; б — коаксиальный; в — с тороидальными электродами; г — двустороннего истечения; д — с внешней плазменной дугой; е — с расходуемыми электродами (эрозионный); 1 — источник электропитания; 2 — разряд; 3 — плазменная струя; 4 — электрод; 5 — разрядная камера; 6 — соленоид; 7 — обрабатываемое тело.

Рис. 2. Схемы высокочастотных плазматронов: а — индукционный; б — ёмкостный; в — факельный; г — сверхвысокочастотный; 1 — источник электропитания; 2 — разряд; 3 — плазменная струя; 4 — индуктор; 5 — разрядная камера; 6 — электрод; 7 — волновод.

Плазменная горелка

Пла'зменная горе'лка, ручной дуговой плазматрон для нанесения покрытий, резки, сварки, наплавки и др. процессов плазменной обработки. По принципу действия различают 2 группы П. г.: для работы плазменной дугой и для работы плазменной струёй. При механизированной обработке П. г. закрепляется на специальной установке; для нанесения покрытий и наплавки она обычно оснащается устройством для подачи распыляемого или наплавляемого материала (в виде порошка или проволоки). Такая П. г. называется плазменной головкой. Мощность П. г. достигает 100 квт, плазмообразующими газами служат Ar, Не, N2, NH4, воздух и их смеси. Для зажигания дугового разряда в начале работы необходимо замкнуть зазор между катодом и анодом П. г. (плазменная струя) или между катодом и обрабатываемым металлом (плазменная дуга) или иным образом возбудить разряд (см. об этом в ст. Плазматрон).

Плазменная металлургия

Пла'зменная металлу'ргия, извлечение из руд, выплавка и обработка металлов и сплавов в плазменных реакторах и плазменных печах, а также использование плазменного нагрева для интенсификации существующих способов плавки. П. м. начала развиваться в 50-х гг. 20 в. в СССР, Японии, США, ГДР, ФРГ и др. странах.

  Переработка руд (окислов и др.) осуществляется путём их термической диссоциации в плазме; они либо подаются в плазменную струю в виде порошка, либо образуют в смеси с электропроводным материалом, например углеродом, расходуемый электрод плазматрона. Для предупреждения обратных реакций применяют восстановители (углерод, водород и др.), резкую «закалку» газообразных продуктов диссоциации на выходе из плазменного реактора (см. Плазмохимия) либо получают промежуточные продукты, например хлориды. При обработке сложных соединении важной задачей является разделение получаемых продуктов.

  Выплавка сталей и сплавов производится в плазменнодуговых печах (ПДП). Инертная атмосфера и отсутствие обычных для электродуговой плавки источников загрязнения металла дают возможность получать из обычной шихты с высоким содержанием отходов чистый металл, например особонизкоуглеродистые нержавеющие стали высокого качества. При частичной замене аргона азотом в плазмообразующем газе или непосредственно в атмосфере печи получают легированный азотом металл без применения азотированных сплавов.

  Переплав металлов и сплавов с целью повышения их чистоты или легирования производится в ПДП с металлическим водоохлаждаемым кристаллизатором. Глубокому рафинированию металла способствуют инертная или восстановительная проточная атмосфера, большая поверхность взаимодействия металла с газовой фазой, обработка металла шлаком. Кристаллизацией металла в таких ПДП можно управлять, раздельно регулируя скорость плавления металла и тепловой поток на ванну. В промышленных условиях осуществлены (по отдельности и комплексно) различные варианты процесса: рафинирующий переплав в атмосфере инертных газов; совмещение переплава с плазменноводородным раскислением металла или насыщением его азотом; плазменнодуговой переплав со шлаком. Проведение процесса при повышенном или нормальном давлении обеспечивает предотвращение потерь летучих легирующих элементов (хрома, марганца и др.), насыщение сплава азотом, а при пониженном давлении — более глубокую дегазацию металла (например, титана).

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату