их эрозии. Когда этот процесс по технологическим соображениям полезен, его интенсифицируют (П. с расходуемыми электродами); в др. случаях, напротив, минимизируют, изготовляя электроды из тугоплавких материалов (вольфрам, молибден, спец. сплавы) и (или) охлаждая их водой, что, кроме того, увеличивает срок службы электродов. Более «чистую» плазму дают ВЧ плазматроны (см. ниже).
П. с плазменной струёй обычно используют при термической обработке металлов, для нанесения покрытий, получения порошков с частицами сферической формы, в плазмохимической технологии и пр.; П. с внешней дугой служат для обработки электропроводных материалов; П. с расходуемыми электродами применяют при работе на агрессивных плазмообразующих средах (воздухе, воде и др.) и при необходимости генерации металлической, углеродной и т.д. плазмы из материала электродов (например, при карботермическом восстановлении руд).
Мощности дуговых П. 102
Высокочастотный П. включает: электромагнитную катушку-индуктор или электроды, подключенные к источнику высокочастотной энергии, разрядную камеру, узел ввода плазмообразующего вещества. Различают индукционные, ёмкостные, факельные (см.
Для пуска П., т. е. возбуждения в нём разряда, применяют: замыкание электродов, поджиг вспомогательного дугового разряда, высоковольтный пробой межэлектродного промежутка, инжекцию в разрядную камеру плазмы и др. способы. Основные тенденции развития П.: разработка специализированных П. и плазменных реакторов для металлургической, химической промышленностей, повышение мощности в одном агрегате до 1—10

Рис. 1. Схема дуговых плазматронов: а — осевой; б — коаксиальный; в — с тороидальными электродами; г — двустороннего истечения; д — с внешней плазменной дугой; е — с расходуемыми электродами (эрозионный); 1 — источник электропитания; 2 — разряд; 3 — плазменная струя; 4 — электрод; 5 — разрядная камера; 6 — соленоид; 7 — обрабатываемое тело.

Рис. 2. Схемы высокочастотных плазматронов: а — индукционный; б — ёмкостный; в — факельный; г — сверхвысокочастотный; 1 — источник электропитания; 2 — разряд; 3 — плазменная струя; 4 — индуктор; 5 — разрядная камера; 6 — электрод; 7 — волновод.
Плазменная горелка
Пла'зменная горе'лка, ручной дуговой
Плазменная металлургия
Пла'зменная металлу'ргия, извлечение из руд, выплавка и обработка металлов и сплавов в
Переработка руд (окислов и др.) осуществляется путём их
Выплавка сталей и сплавов производится в плазменнодуговых печах (ПДП). Инертная атмосфера и отсутствие обычных для электродуговой плавки источников загрязнения металла дают возможность получать из обычной шихты с высоким содержанием отходов чистый металл, например особонизкоуглеродистые нержавеющие стали высокого качества. При частичной замене аргона азотом в плазмообразующем газе или непосредственно в атмосфере печи получают легированный азотом металл без применения азотированных сплавов.
Переплав металлов и сплавов с целью повышения их чистоты или легирования производится в ПДП с металлическим водоохлаждаемым кристаллизатором. Глубокому рафинированию металла способствуют инертная или восстановительная проточная атмосфера, большая поверхность взаимодействия металла с газовой фазой, обработка металла шлаком. Кристаллизацией металла в таких ПДП можно управлять, раздельно регулируя скорость плавления металла и тепловой поток на ванну. В промышленных условиях осуществлены (по отдельности и комплексно) различные варианты процесса: рафинирующий переплав в атмосфере инертных газов; совмещение переплава с плазменноводородным раскислением металла или насыщением его азотом; плазменнодуговой переплав со шлаком. Проведение процесса при повышенном или нормальном давлении обеспечивает предотвращение потерь летучих легирующих элементов (хрома, марганца и др.), насыщение сплава азотом, а при пониженном давлении — более глубокую дегазацию металла (например, титана).