основания, т. е. по величине, которую показал бы барометр-анероид на поверхности П.: выражают её в миллибарах (мбар). Эта величина не совпадает с действительным атмосферным давлением на поверхности П., зависящим (пропорционально) от ускорения силы тяжести на П., зато позволяет непосредственно сравнивать атмосферу П. с атмосферой Земли, а также вычислить общую массу газовой оболочки П. Мощность атмосферы (или какого-либо газа в ней) может характеризоваться специальной величиной (в м-атм, или см-атм), эквивалентной высоте (в м или см), на которую она простиралась бы, если бы имела повсюду плотность, соответствующую давления в 1 атм » 1013 мбар, и температуру 0 oC. На Земле эта величина составляет около 8000 м-атм, на Меркурии 13 см-атм, на Марсе давление атмосферы у поверхности 58 мбар (по анероиду), на Венере около 100 атм. Очень мощные атмосферы имеют П.-гиганты.

  Химический состав атмосфер П. определяется из спектральных наблюдений по интенсивности молекулярных полос поглощения, возникающих в спектре солнечного излучения, после того как оно дважды прошло через атмосферу П.— до и после отражения от её поверхности. Сложность применения этого метода связана с тем, что на спектрограмме, полученной на земной поверхности, эти полосы трудно отделимы от полос, обусловленных прохождением света через земную атмосферу. Частично эти затруднения устраняются при наблюдениях с баллонов (см. Баллонная астрономия) . Этим методом сравнительно легко обнаруживаются газы атмосфер П., отсутствующие или имеющиеся в небольшом количестве в атмосфере Земли; таковы: углекислый газ (CO2), метан (CH4), аммиак (NH3), водород (H2). Труднее обнаружить водяные пары (H2O) и кислород (O2). Почти невозможно обнаружить у П. таким способом гелий (Не), азот (N2), аргон (Ar) и некоторые др. газы, дающие полосы поглощения в далёкой ультрафиолетовой части спектра. К началу космической эры уже было установлено, что у Венеры и Марса главной составляющей атмосферы является CO2, а у внешних П.— молекулярный водород H2 (около 85 км-атм над облачным слоем Юпитера), CH4 и NH3. Предполагается по аналогии с составом атмосферы Солнца наличие большого количества гелия.

  Космическая эра принесла новую методику исследования атмосфер П. Измеряя ослабление радиосигналов космических зондов, заходящих за П., вследствие поглощения в атмосфере, можно вывести «шкалу высот» атмосферы и определить т. о. отношение её температуры Т к среднему молекулярному весу m. Однако этот метод применим только к разрежённым атмосферам или к верхним слоям более мощных атмосфер. Несравненно эффективнее непосредственный контакт спускаемых аппаратов космических зондов с атмосферой П. Такой эксперимент был осуществлен в 60-х гг. 20 в. при спуске на Венеру зондов серии «Венера» (СССР). Измерения интенсивности той или иной молекулярной полосы в спектре деталей П., над которыми пролетает искусственный спутник П., даёт возможность определить также и расстояние до поверхности П. в этом месте, т. е. рельеф П. под траекторией спутника. Ценные результаты такого рода были получены с помощью искусственных спутников Марса «Марс-3», «Марс-5» (СССР) и «Маринер-9» (США). Вследствие вращения П. под орбитой спутника проходят разные части её поверхности, благодаря чему рельеф Марса был определён на значительной части его поверхности с точностью до нескольких сот м.

  Температура планет. Прямые измерения интегрального теплового потока или излучения П. в отдельных областях её инфракрасного спектра, осуществляемые, например, с помощью болометров, позволяют определить общую температуру П. или температуру отдельных её частей. Та же задача может быть решена путём измерения тепловых потоков П. радиометодами в сантиметровом, дециметровом и метровом диапазонах. Из подобных измерений выводятся минимальные температуры, основанные на предположении, что П. излучает как абсолютно чёрное тело. Есть основание полагать, что истинные температуры лишь немного выше полученных этим методом. Кроме того, радиоизмерения позволяют определять температуру на разных уровнях атмосферы П. и даже на разных глубинах под её поверхностью (в пределах метров), т.к. излучение разных частот испытывает разное поглощение в атмосфере и в твёрдой коре П. Именно методом радиоизмерений была измерена истинная температура поверхности Венеры — около + 500 °С; болометрические же измерения давали температуру только верхней её атмосферы, на уровне облаков (около — 40 °С). Сравнение теоретической равновесной температуры (т. е. той, которую должна была бы иметь П., если бы её единственным источником тепла было солнечное облучение) с измеренной температурой даёт возможность судить о том, что П. обладает собственными источниками тепла, которое просачивается наружу. Этот процесс очень существенно зависит от теплопроводности коры и атмосферы П. Атмосфера может обусловливать сильный парниковый эффект, сущность которого заключается в том, что она пропускает приходящее от Солнца оптическое излучение, но в значительной мере задерживает уходящее наружу длинноволновое (тепловое) излучение самой П. Поэтому П., лишённая атмосферы, холоднее и отличается большей суточной амплитудой температуры, чем П. с атмосферой. Именно поэтому у Венеры под мощной атмосферой температура на 550 °С выше, чем на уровне облаков, а дневная температура практически неотличима от ночной. У Юпитера также при равновесной температуре 110 К измерения в инфракрасном диапазоне показали температуру 123 К, а на миллиметровых и сантиметровых волнах даже 150 К. Она ещё выше в дециметровом диапазоне, но это является следствием нетеплового излучения П., к которому понятие температуры неприменимо. У др. П.-гигантов превышение измеренных температур над равновесными ещё больше, но измерения менее точны. Для определения температуры отдельных деталей поверхности П. пригодны только тепловые измерения с крупными телескопами в инфракрасной области спектра. Так было установлено, например, что в экваториальной области Марса летом дневные температуры могут быть заметно выше 0 °С, ночные же — около — 60 °С; что тёмные «моря» теплее светлой «суши» и т.д.

  Совокупное исследование температуры и химического состава атмосферы П. (наличие кислорода и воды) позволяет сделать заключение о возможности существования жизни на П. Так, из того, что известно о Марсе, можно заключить, что на этой П. может существовать жизнь в простейших её формах. Возможность жизни даже в таких формах на др. П. Солнечной системы сомнительна.

  Внутреннее строение планет. Наблюдения изменений орбиты спутника П., в частности поворота плоскости орбиты, вращения орбиты в этой плоскости позволяют математическим путём определить форму П., её сжатие. Скорость этого вращения тем больше, чем больше величина I разности между сжатием e и половиной отношения c центробежной силы на экваторе П. к силе тяжести. Величина I может быть определена по результатам длительных наблюдений спутника, а c вычислена по известным размерам и массе П. и скорости её вращения; после этого величина сжатия (динамического) определяется из уравнения e = Т + c/2. Между тем из теории следует, что e зависит от распределения масс внутри П., а именно e меняется от значения c/2 для П., у которой вся масса сосредоточена в её центре, до 5c/4 для П., однородных от центра до периферии. Зная среднюю плотность П., оценивая возможные значения давления внутри П. и принимая в расчёт её химический состав, приведённые выше закономерности позволяют составить обоснованные суждения о природе вещества в глубоких недрах П. и его агрегатном состоянии. Дополнительные сведения о распределении масс внутри П. может дать определение скорости прецессии, её оси вращения, но для этого нужны длительные (несколько столетий) наблюдения за её вращением.

  Как видно из табл. 1, у П. земной группы средняя плотность значительно превышает среднюю плотность П.-гигантов, близкую к средней плотности Солнца (1,4 г/см3). П.- гиганты, кроме того, имеют несравненно большие массы, вследствие чего в их недрах давление значительно выше. Т. о., с большой вероятностью можно предполагать, что у Меркурия, обладающего большой по сравнению с др. П. плотностью, есть плотное железное ядро, в котором содержится около 60% массы П.; Венера, по массе и плотности сходная с Землёй, имеет в своём центре ядро, более богатое железом, чем Земля, а плотность силикатов в её оболочке несколько выше, чем в оболочке Земли; Земля же имеет сложную структурную оболочку (мантию), простирающуюся до глубины 2900 км, а ниже находится ядро, по-видимому металлическое (железное), на границе с мантией — жидкое, а у центра

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату