г/см3 Термо-стойкость, ° С Твердость, Мн/м2 (кгс/мм2) Модуль упру-гости при рас-тяжении, Гн/м2 (кгс/мм2) Ударная вязкость, кдж/м2 Разрушающее напряжение, Мн/м2 (кгс/мм2)
полимер наполнитель при разрыве при сжатии при изгибе
Термопласты
Полиэтилен 0,945 60—80 45—60 (4,5—6,0) 0,4—0,55 (40—55) Не разру- шается 20—40 (2—4) 40—80 (4—8) 20—30 (2—3)
Поливинил-хлорид 1,38 60—70 130—160 (13—16) 3—4 (300—400) 100—120 40—60 (4—6) 80—120 (8—12) 80—120 (8—12)
Полистирол 1,047 75—85 140—150 (14—15) 3—4 (300—400) 10—15 35—40 (3,5—4) 80—110 (8—11) 80—90 (8—9)
Полистирол Эластомер 1,03 70—80 110—120 (11—12) 1,8—2,5 (180—250) 25—35 27—30 (2,7—3) 40—50 (4—5)
Полистирол Стекловолокно (l = 2—4 мм; 30% по массе) 1,4 100—110 180—190 (18—19) 6,8—8 (680—800) 17—20 70—80 (7—8) 100—120 (10—12)
Полиамид-6 1,14 60—70 100—120 (10—12) 2,3—2,8 (230—280) 10—170 60—90 (6—9) 50—65 (5—6,5) 90—140 (9—14)
Полиамид-6 Стекловолокно (l = 2—4 мм; 20% по массе) 1,35 120—130 200—250 (20—25) 8,4 (840) 20—40 180 (18) 180—200 (18—20) 200—280 (20—28)
Поликарбонат 1,2 110—130 150—160 (15—16) 2,2—2,6 (220—260) 120—140 50—75 (5—75) 80—85 (8—8,5) 80—100 (8—10)
Поликарбонат Стекловолокно (l = 2—4 мм) 1,42 200—220 250—280 (25—28) 6,5—7,5 (650—750) 90—110 80—90 (8—9) 100—110 (10—11) 140—150 (14—15)
Реактопласты
Отвержденная феноло-фор- мальдегид- ная смола 110—130 220—250 (22—25) 3—4 (300—400) 3—4 30—50 (3—5)
То же Древесная мука (50% по массе) 1,4 100 200—240 (20—24) 7—8 (700—800) 4—4,5 40—50 (4—5) 150 (15) 60—70 (6—7)
То же Кварцевая мука (50% по массе) 1,9 150 8—10 (800—1000) 3—3,5 40—50 (4—5) 60—70 (6—7) 60—80 (6—8)
То же Асбестовое волокно (50% по массе) 1,85 200—250 16—25 (1600—2500) 21 50—70 (5—7) 100—110 (10—11) 80 (8)
То же Древесный шпон (75% по массе) 1,3 125 200—240 (20—24) 28 (2800) 80 250—280 (25—28) 160 —180 (16—18) 260—280 (26—28)
Отвержденная эпоксидная смола 1,27 160—180 (16—18) 3—3,5 (300—350) 60—70 (6—7)
То же Стекловолокно непрерывное однонаправленное (70% по массе) 2,1 160—180 50—56 (5000—5600) 100—140 1800—2000 (180—200) 1200—1400 (120—140) 2000—200 (200—220)
То же Стеклоткань (70% по массе) 1,79—1,94 120—160 22—31 (2200—3100) 450—480 (45—48) 450—500 (45—50) 650— 700 (65—70)
То же Углеродное волокно непрерывное однонаправленное (60% по массе) 1,52 160—200 180—230 (18000—23000) 40—50 1000—1200 (100—120) 600—800 (60—80) 800—1000 (80—100)
То же Полибензимидазольное волокно непрерывное однонаправленное (60% по массе) 1,36 180—200 120—150 (12000—15000) 200—250 (20—25) 300—350 (30—35) 500 —600 (50—60)
То же Стекловолокно, хаотичное распределение (70% по массе) 1,7—1,85 130—180 (13—18) 100—130 (10—13) 240—300 (24—30)

  Табл. 2.—Структура потребления пластмасс в различных странах, % от общего потребления*.

Область применения СССР США Япония ФРГ ГДР
Строительство 35 28 28 33 28
Машиностроение 25 23 25 20 18
Легкая промышленность и товары народного потребления 24 31 35 35 32
Электротехника и электроника 10 12 10 8 16
Сельское хозяйство 6 6 2 4 6

  Табл. 3.—Развитие мирового производства пластмасс, чёрных металлов и алюминия, млн. т

Наименование материала 1950 1960 1965 1970
Пластмассы….. 1,5 7,5 14,5 30
Черные ме-таллы………. 133,6 258,6 324,7 560
Аллюминий….. 1,5 4,5 6,1 11,3

Пластическое обеспечение функции

Пласти'ческое обеспе'чение фу'нкции, обновление энергообразующих, опорных и др. структур дифференцированных клеток, осуществляемое путём биосинтеза белка и необходимое для сохранения физиологической функции клеток и органов в условиях целостного организма. П. о. ф. основано на тесной взаимосвязи между генетическим аппаратом дифференцированной клетки и её физиологической функцией. В некоторых дифференцированных клетках белки и образованные ими структуры быстро разрушаются (например, митохондрии печёночных клеток существуют 6—7 суток), однако функция и структура дифференцированной клетки сохраняются длительное время. Это возможно потому, что процесс разрушения структур более или менее полностью уравновешивается деятельностью генетического аппарата клетки, обеспечивающего синтез специализированных клеточных белков и на его основе — новообразование разрушенных структур. Совершенство обновления и устойчивость физиологической функции могут быть достигнуты в том случае, если интенсивность синтеза белка будет постоянно соответствовать интенсивности функционирования и разрушения структур. Информация, направленная из цитоплазмы в ядро и сигнализирующая об уровне физиологической функции, имеет значение обратной связи, регулирующей активность генетического аппарата и предупреждающей разрушение клеточных структур. Уровень физиологической функции, оказывая влияние на активность генетического аппарата, имеет определяющее значение в П. о. ф. Синтез белков и превращение энергии в дифференцированных клетках органа определяются, таким образом, интенсивностью функционирования его структур (ИФС), регулирующей активность генетического аппарата. Активация генетического аппарата дифференцированных клеток при усилении их функций обеспечивает не только сохранение дифференцировки клеток путём синтеза высокоспециализированных белков, но и опережающее увеличение массы энергообразующих структур по сравнению с увеличением массы функционирующих структур. Взаимосвязь «ИФС Û активность генетического аппарата» имеет определяющее значение в П. о. ф. и является необходимым звеном в механизме приспособления организма

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату