+ nm в 108 раз, а верхний предел для распада K+ ® pm + nm   +  составляет примерно 10-7 от полной вероятности распада К-мезона. О ещё более сильной подавленности нейтральных токов, изменяющих странность, свидетельствует наблюдённая на опыте малая величина разности масс долгоживущего и короткоживущего нейтральных К-мезонов; такая разность масс возникает за счёт перехода К0 Û  и была бы очень большой, если бы существовало прямое взаимодействие нейтральных токов . Для того чтобы в рамках теории объяснить отсутствие нейтральных токов с изменением странности, было постулировано, что наряду с тремя кварками р, n, l существует четвёртый кварк с , который получил назв. «очарованного», или «суперзаряженного». При этом заряженный адронный ток, взаимодействующий с W-бозонами, имеет вид:

n cos J + l sin J + n sin J + l cos J,

а нейтральный адронный ток, взаимодействующий с Z0 -бозоном, переводит кварки сами в себя: он содержит четыре слагаемых , , ,  и не содержит слагаемых типа  и, следовательно, сохраняет странность.

  Если существуют с -кварки, то должны существовать и адроны, содержащие эти кварки, т. н. «очарованные адроны». Осенью 1974 С. Тинг с сотрудниками и Б. Рихтер с сотрудниками (США) обнаружили мезоны с массами в 3,1 Гэв и 3,7 Гэв, которые, возможно, являются состояниями типа . Если такая интерпретация верна, то это открытие указывает на правильность стратегии, лежащей в основе модели Вайнберга — Салама и ведущихся в настоящее время работ по созданию единой теории слабых, электромагнитных и сильных взаимодействий.

  Лит.: Паули В., Нарушение зеркальной симметрии в законах атомной физики. К старой и новой теории нейтрино, в сборнике: Теоретическая физика 20 века, М., 1962, с. 376—418; Ву Ц. С., Мошковский С. А., Бета-распад, пер. с англ., М., 1970; Окунь Л. Б., Слабое взаимодействие элементарных частиц, М., 1963; Магshak R. Е., Riazuddiп, Ryап С. P., Theory of weak interactions in particle physics, N. Y., 1969.

  Л. С. Окунь.

Рис. 4 к ст. Слабые взаимодействия.

Рис. 5 к ст. Слабые взаимодействия.

Рис. 7 к ст. Слабые взаимодействия.

Рис. 2 к ст. Слабые взаимодействия.

Рис. 6. Нарушение пространственной чётности инвариантности относительно зарядового сопряжения в процессах слабого взаимодействия, а также инвариантность слабого взаимодействия относительно комбинированной инверсии иллюстрируются на распадах m+ ®e+ + nе + ñm (а) и m- ® е- + ñе + nm (б). Жирная стрелка — направление спина мюона m+ (m- ) («кружок» со стрелкой обозначает направление «вращения», отвечающее указанному направлению спина); тонкая стрелка — направление импульса позитрона е+ (электрона е- ); пунктирная стрелка — изображение вылета е+- ) в «зеркале» Р (при зеркальном отражении направление спина — направление «вращения» не меняется). Если бы в слабых взаимодействиях сохранялась пространственная чётность, т. е. существовала зеркальная симметрия, то вероятности вылета е+- ) под углами J и p — J к направлению спина m+ и m- были бы одинаковыми. Если бы слабое взаимодействие было инвариантно относительно зарядового сопряжения, то распады m+ и m- выглядели бы одинаково. в действительности этого не наблюдается. Инвариантность слабых взаимодействий относительно комбинированной инверсии проявляется в том, что оказываются одинаковыми вероятности вылета е+ под углом J к спину m+ (а) и вылета е- под углом p — J к спину m- (б).

Рис. 3 к ст. Слабые взаимодействия.

Рис. 1 к ст. Слабые взаимодействия.

Слабый ферромагнетизм

Сла'бый ферромагнети'зм, существование небольшого [~0,1—10 СГСМ/моль, или ~ 102 104 а/

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату