атомов, гелия, щелочных металлов (серии Лаймана, Бальмера, Пашена, Брэкета, Пфаунда и Хамфри для Н; главная, диффузная и резкая серии для щелочных металлов; см. Атомные спектры).

Спектральный анализ (в линейной алгебре)

Спектра'льный ана'лиз линейных операторов, обобщение выросшей из задач механики теории собственных значений и собственных векторов матриц (т. е. линейных преобразований в конечномерном пространстве) на бесконечномерный случай (см. Линейный оператор, Операторов теория). В теории колебаний изучается движение системы с n степенями свободы в окрестности положения устойчивого равновесия, которое описывается системой линейных дифференциальных уравнений вида , где х есть n-мерный вектор отклонений обобщённых координат системы от их равновесных значений, а А — симметрическая положительно определённая матрица. Такое движение может быть представлено в виде наложения n гармонических колебаний (т. н. нормальных колебаний) с круговыми частотами, равными корням квадратным из всевозможных собственных значений l k матрицы А. Нахождение нормальных колебаний системы здесь сводится к нахождению всех собственных значений lk; и собственных векторов xk матрицы А. Совокупность всех собственных значений матрицы называют её спектром. Если матрица А — симметрическая, то её спектр состоит из n действительных чисел l1, ..., ln (некоторые из них могут совпадать друг с другом), а сама матрица с помощью перехода к новой системе координат может быть приведена к диагональному виду, т. е. отвечающее ей линейное преобразование А в n-мерном пространстве (т. н. самосопряжённое преобразование) допускает специальное представление — т. н. спектральное разложение вида

  где E1,..., En операторы проектирования на взаимно перпендикулярные направления собственных векторов х1, ......, xn. Несимметрическая же матрица А (которой отвечает несамосопряжённое линейное преобразование) имеет, вообще говоря, спектр, состоящий из комплексных чисел l1, ..., l1, и может быть преобразована лишь к более сложной, чем диагональная, жордановой форме [см. Нормальная (жорданова) форма матриц], отвечающей представлению линейного преобразования А, более сложному, чем описанное выше обычное спектральное разложение.

  При изучении колебаний около состояния равновесия систем с бесконечным числом степеней свободы (например, однородной или неоднородной струны) задачу о нахождении собственных значений и собственных векторов линейного преобразования в конечномерном пространстве приходится распространить на некоторый класс линейных преобразований (т. е. линейных операторов) в бесконечномерном линейном пространстве. Во многих случаях (включая, в частности, и случай колебания струны) соответствующий оператор может быть записан в виде действующего в пространстве функций f(x) интегрального оператора А, так что здесь

,

  где К(х, у) заданная на квадрате а £ х, у £ b непрерывная функция двух переменных, удовлетворяющая условию симметрии К (х, у) = К(у, х) . В этих случаях оператор А всегда имеет полную систему попарно ортогональных собственных функций jk, которым отвечает счётная последовательность действительных собственных значений lk, составляющих в своей совокупности спектр оператора А. Если рассматривать функции, на которые действует оператор А, как векторы гильбертова пространства, то действие А будет, как и в случае конечномерного самосопряжённого преобразования, сводиться к растяжению пространства вдоль системы взаимно ортогональных осей jk с коэффициентами растяжения lk (при lk < 0 такое растяжение имеет смысл растяжения с коэффициентом | lk|, объединённого с зеркальным отражением), а сам оператор А здесь снова будет иметь спектральное разложение вида

  где Ek операторы проектирования на направления jk.

  С. а., развитый первоначально для интегральных операторов с симметричным ядром К(х, у), определённым и непрерывным в некоторой ограниченной области, был затем в рамках общей теории операторов распространён на многие другие типы линейных операторов (например, на интегральные операторы с ядром, имеющим особенность или заданным в неограниченной области, дифференциальные операторы в пространствах функций одного или нескольких переменных и т. д.), а также на абстрактно заданные линейные операторы в бесконечномерных линейных пространствах. Оказалось, однако, что такое распространение связано с существенным усложнением С. а., так как для многих линейных операторов собственные значения и собственные функции, понимаемые в обычном смысле, вообще не существуют. Поэтому в общем случае спектр приходится определять не как совокупность собственных значений оператора А, а как совокупность тех значений, для которых оператор (А — lЕ)-1, где Е — тождественный (единичный) оператор, не существует, или определён лишь на неплотном множестве, или является неограниченным оператором. Все собственные значения оператора принадлежат его спектру и в совокупности образуют его дискретный спектр; остальную часть спектра часто называют непрерывным спектром оператора [иногда же непрерывным спектром называют лишь совокупность тех l, при которых оператор (А — lЕ)-1 определён на плотном множестве элементов пространства, но неограничен, а все точки спектра, не входящие ни в дискретный, ни в непрерывный спектр, называют остаточным спектром].

  Наиболее разработан С. а. самосопряжённых линейных операторов в гильбертовом пространстве (обобщающих симметрические матрицы) и унитарных линейных операторов в том же пространстве (обобщающих унитарные матрицы). Самосопряжённый оператор А в гильбертовом пространстве всегда имеет чисто действительный спектр (дискретный, непрерывный или смешанный) и допускает спектральное разложение вида

 (*)

  где E(l) т. н. разложение единицы (отвечающее оператору А), т. е. семейство проекционных операторов, удовлетворяющее специальным условиям. Точками спектра в данном случае являются точки роста операторной функции Е(l) ; в случае чисто дискретного спектра все они являются скачками Е(l), так что здесь

  и спектральное разложение (*) сводится к разложению

  Унитарный оператор в гильбертовом пространстве имеет спектр, расположенный на окружности |l| = 1, и допускает спектральное разложение родственного (*) вида, но с заменой интегрирования от -¥ до ¥ интегрированием по этой окружности. Изучен также специальный класс нормальных операторов в гильбертовом пространстве, представимых в аналогичном представлению

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату