свойство для всевозможных комбинаций металлических систем, как двойных, так и многокомпонентных. Раскрываемый диаграммой состояния характер взаимодействия компонентов системы (образование твёрдых растворов, химических соединений, механических смесей, наличие фазовых превращений в твёрдом состоянии) позволяет предвидеть тип диаграмм состав — твёрдость, состав — электропроводность и др., получить представление о макроструктуре С. Во второй половине 20 в. внимание учёных в СССР и за рубежом всё больше сосредоточивается на проблеме предсказания характера взаимодействия элементов и свойств их С. При этом используются закономерности, вскрытые периодической системой элементов, успехи теории химической связи, достижения физики твёрдого тела и вычислительной техники. Разработка теории С. создала новые возможности развития промышленности, а также ряда отраслей новой техники. Современные промышленные С. — основная часть конструкционных материалов. При этом 95% мировой металлопродукции составляют С. на основе железа — самого дешёвого и доступного металла (сталь, чугун, ферросплавы). Всё больше элементов периодической системы Менделеева, до недавнего времени представлявших чисто научный интерес, находит практическое применение для легирования известных и создания новых С. с целью расширения диапазона свойств и областей применения.
Большое число всевозможных С. требует их классификации. Для неё существует теоретический и практический подход. В первом случае с точки зрения термодинамики химической (и фаз правила) С. классифицируют: а) по числу компонентов — на двойные, тройные и т. д.; б) по числу фаз — на однофазные (твёрдый раствор или интерметаллид) и многофазные (гетерофазные), состоящие из двух и более фаз. Этими фазами могут быть чистые компоненты, твёрдые растворы, фазы со структурой a-, b-, g-, e-латуни, b-вольфрама, типа Cu5Ca, NiAs, CaF2, сигма-фазы, фазы Лавеса (названы по имени нем. учёного Ф. Лавеса), фазы внедрения и др. Особенно ценны С. с очень тонкой гетерогенностью (см. Дисперсноупрочнённые материалы, Старение металлов); можно считать, что они лежат на границе между твёрдыми растворами и многофазными С. По практическому получению и применению принята следующая классификация С.: а) по металлам — либо являющимся основой С. (С. чёрных металлов и С. цветных металлов, а также алюминиевые сплавы, железные сплавы, никелевые сплавы и т. п.), либо по добавленным в небольших количествах и придающим особо ценные свойства легирующим компонентам (бериллиевая бронза, ванадиевая, вольфрамовая и др. стали); б) по применению (для изготовления конструкций или инструментов) и свойствам — антифрикционные, жаропрочные, жаростойкие, износостойкие, лёгкие и сверхлёгкие, легкоплавкие, химически стойкие и многие другие, а также С. с особыми физическими свойствами — тепловыми, магнитными, электрическими (см. Прецизионные сплавы); в) по технологии изготовления изделий — на литейные (отливка жидких С. в формы); деформируемые (в холодном или горячем состоянии путём ковки, прокатки, волочения, прессования, штамповки); полученные методами порошковой металлургии (см. Спечённые материалы).
Для обозначения качественного состава выпускаемые в СССР С. маркируются (см. на примере медных сплавов, легированных сталей). Кроме того, многие С. имеют названия, связанные с различными их признаками: составом (например, нихром), особыми свойствами (например, инвар, константан). С. называют и по фамилиям изобретателей (Вуда сплав, мельхиор, монель-металл), названиям фирм (армко-железо) и др.
Свойства большинства С. определяются как составом, так и структурой С., зависящей от условий кристаллизации и охлаждения, термической и механической обработки. При нагреве и охлаждении изменяется структура С. (см. Макроструктура, Микроструктура), что обусловливает изменение механических, физических и химических свойств и влияет на поведение С. при обработке и эксплуатации. Выяснение (с помощью диаграмм состояния) возможных фазовых превращений в С. даёт исходные данные для анализа важнейших видов термической обработки (закалки, отпуска металлов, отжига, старения). Например, перед отжигом углеродистых сталей исходной структурой чаще всего является феррито-карбидная смесь; основное превращение, происходящее при нагревании, — это переход перлита в аустенит при температуре выше 727 °С («точка A1»); закалка позволяет сохранить аустенитную структуру (т. н. закалка без полиморфного превращения, при которой происходит повышение прочности при сохранении пластичности С.). Типичный пример подобного поведения для алюминиевых С. — закаленный дуралюмин Д16. Реже встречаются С., у которых при закалке снижается прочность и сильно возрастает пластичность по сравнению с отожжённым состоянием. Типичный пример — бериллиевая бронза Бр. Б2 или нержавеющая хромоникелевая сталь X18H9. Для любых металлов или С., в которых при изменении температуры происходит полиморфное превращение основного компонента, при быстром охлаждении возможна закалка с бездиффузионным полиморфным превращением, которую обычно называют «закалкой на мартенсит». Мартенситное превращение, открытое при изучении закалки углеродистых и легированных сталей, как выяснилось впоследствии, является одним из фундаментальных способов перестройки кристаллической решётки, свойственным как чистым металлам, так и самым различным классам С.: безуглеродистым С. на основе железа, сплавам цветных металлов, полупроводниковым соединениям и др. Современная термическая обработка металлов и С. включает не только собственно термическую, но и термомеханическую обработку, химико- механическую обработку и химико-термическую обработку. В процессе таких технологических операций, как литьё, сварка, горячая обработка давлением, С. могут побочно также подвергаться отдельным видам термического воздействия и изменять свои свойства.
Для установления и проверки свойств С. применяют различные методы контроля, в т. ч. разрушающего — испытания на механическую прочность и пластичность, жаропрочность (см. Механические свойства материалов), а также испытания на стойкость против коррозии(см. Коррозия металлов, Жаростойкость и др.), и неразрушающего (измерения твёрдости, электрических, оптических, магнитных и др. свойств). Состав С. определяется химико-аналитическими методами (см. Качественный анализ, Количественный анализ), с помощью спектрального анализа, рентгеноспектрального анализа и др. методов. Весьма эффективны для практического применения методы быстрого («экспрессного») химического