Т. по этому процессу получается в губчатом виде и после измельчения переплавляется в вакуумных дуговых печах на слитки с введением легирующих добавок, если требуется получить сплав. Магниетермический метод позволяет создать крупное промышленное производство Т. с замкнутым технологическим циклом, так как образующийся при восстановлении побочный продукт — хлорид магния направляется на электролиз для получения магния и хлора.
В ряде случаев для производства изделий из Т. и его сплавов выгодно применять методы порошковой металлургии. Для получения особо тонких порошков (например, для радиоэлектроники) можно использовать восстановление двуокиси Т. гидридом кальция.
Мировое производство металлического Т. развивалось весьма быстро: около 2 т в 1948, 2100 т в 1953, 20 000 т в 1957; в 1975 оно превысило 50 000 т.
Применение. Основные преимущества Т. перед др. конструкционными металлами: сочетание лёгкости, прочности и коррозионной стойкости. Титановые сплавы по абсолютной, а тем более по удельной прочности (то есть прочности, отнесённой к плотности) превосходят большинство сплавов на основе др. металлов (например, железа или никеля) при температурах от -250 до 550 °С, а по коррозионности они сравнимы со сплавами благородных металлов (см. также Лёгкие сплавы ). Однако как самостоятельный конструкционный материал Т. стал применяться только в 50-е гг. 20 в. в связи с большими техническими трудностями его извлечения из руд и переработки (именно поэтому Т. условно относили к редким металлам ). Основная часть Т. расходуется на нужды авиационной и ракетной техники и морского судостроения (см. также Титановые сплавы ). Сплавы Т. с железом, известные под названием «ферротитан» (20—50% Т.), в металлургии качественных сталей и специальных сплавов служат легирующей добавкой и раскислителем.
Технический Т. идёт на изготовление ёмкостей, химических реакторов, трубопроводов, арматуры, насосов и др. изделий, работающих в агрессивных средах, например в химическом машиностроении. В гидрометаллургии цветных металлов применяется аппаратура из Т. Он служит для покрытия изделий из стали (см. Титанирование ). Использование Т. даёт во многих случаях большой технико-экономический эффект не только благодаря повышению срока службы оборудования, но и возможности интенсификации процессов (как, например, в гидрометаллургии никеля). Биологическая безвредность Т. делает его превосходным материалом для изготовления оборудования для пищевой промышленности и в восстановительной хирургии. В условиях глубокого холода прочность Т. повышается при сохранении хорошей пластичности, что позволяет применять его как конструкционный материал для криогенной техники. Т. хорошо поддаётся полировке, цветному анодированию и др. методам отделки поверхности и поэтому идёт на изготовление различных художественных изделий, в том числе и монументальной скульптуры. Примером может служить памятник в Москве, сооруженный в честь запуска первого искусственного спутника Земли. Из соединений титана практического значение имеют окислы Т., галогениды Т., а также силициды Т., используемые в технике высоких температур; бориды Т. и их сплавы, применяемые в качестве замедлителей в ядерных энергетических установках благодаря их тугоплавкости и большому сечению захвата нейтронов. Карбид Т., обладающий высокой твёрдостью, входит в состав инструментальных твёрдых сплавов, используемых для изготовления режущих инструментов и в качестве абразивного материала.
Двуокись титана и титанат бария служат основой титановой керамики , а титанат бария — важнейший сегнетоэлектрик .
С. Г. Глазунов.
Титан в организме. Т. постоянно присутствует в тканях растений и животных. В наземных растениях его концентрация — около 10-4 %, в морских — от 1,2 ×10-3 до 8 ×10-2 %, в тканях наземных животных — менее 2 ×10-4 %, морских — от 2 ×10-4 до 2 ×10-2 %. Накапливается у позвоночных животных преимущественно в роговых образованиях, селезёнке, надпочечниках, щитовидной железе, плаценте; плохо всасывается из желудочно-кишечного тракта. У человека суточное поступление Т. с продуктами питания и водой составляет 0,85 мг; выводится с мочой и калом (0,33 и 0,52 мг соответственно). Относительно малотоксичен.
Лит.: Глазунов С. Г., Моисеев В. Н., Конструкционные титановые сплавы, М., 1974; Металлургия титана, М., 1968; Горощенко Я. Г., Химия титана, [ч. 1—2], К., 1970—72; Zwicker U., Titan und Titanlegierungen, B., 1974; Bowen H. I. M., Trace elements in biochemistry, L.— N. Y., 1966.
Тита'на галогени'ды, соединения титана с галогенами общей формулы TiXn (где Х — галоген, n = 2—4). Высшие галогениды TiX4 более устойчивы и лучше изучены, чем низшие. Тетрагалогениды TiX4 образуются при взаимодействии титана с сухими галогенами: с фтором при 150 °С, хлором при 300°С, бромом при 360 °С, йодом при 55 °С; наиболее важными из них для практического применения являются хлориды и иодиды. Тетрахлорид титана TiCl4 — бесцветная тяжёлая жидкость с резким запахом, плотность 1,727 г/см 3 при 20 °С, t кип 136 °С, на воздухе дымит. Получают действием хлора на смесь TiO2 с углём при 700—800 °С; служит исходным продуктом для промышленного производства металлического