писал: «Луна упала бы на Землю как камень, чуть только уничтожилась бы сила её полёта».
В 16 и 17 вв. в Европе возродились попытки доказательства существования взаимного тяготения тел. Основатель теоретической астрономии И. Кеплер говорил, что «тяжесть есть взаимное стремление всех тел». Итальянский физик Дж. Борелли пытался при помощи Т. объяснить движение спутников Юпитера вокруг планеты. Однако научное доказательство существования всемирного Т. и математическая формулировка описывающего его закона стали возможны только на основе открытых И. Ньютоном законов механики. Окончательная формулировка закона всемирного Т. была сделана Ньютоном в вышедшем в 1687 главном его труде «Математические начала натуральной философии». Ньютона закон тяготения гласит, что две любые материальные частицы с массами mА и mВ притягиваются по направлению друг к другу с силой F, прямо пропорциональной произведению масс и обратно пропорциональной квадрату расстояния r между ними:
(1)
(под материальными частицами здесь понимаются любые тела при условии, что их линейные размеры много меньше расстояния между ними; см. Материальная точка ). Коэффициент пропорциональности G называется постоянной тяготения Ньютона, или гравитационной постоянной . Численное значение G было определено впервые английским физиком Г. Кавендишем (1798), измерившим в лаборатории силы притяжения между двумя шарами. По современным данным, G = (6,673 ± 0,003)×10-8 см3 /г ×сек2 .
Следует подчеркнуть, что сама форма закона Т. (1) (пропорциональность силы массам и обратная пропорциональность квадрату расстояния) проверена с гораздо большей точностью, чем точность определения коэффициента G. Согласно закону (1), сила Т. зависит только от положения частиц в данный момент времени, то есть гравитационное взаимодействие распространяется мгновенно. Другой важной особенностью закона тяготения Ньютона является тот факт, что сила Т., с которой данное тело А притягивает другое тело В, пропорциональна массе тела В. Но так как ускорение, которое получает тело В, согласно второму закону механики, обратно пропорционально его массе, то ускорение, испытываемое телом В под влиянием притяжения тела А, не зависит от масса тела В. Это ускорение носит название ускорения свободного падения. (Более подробно значение этого факта обсуждается ниже.)
Для того чтобы вычислить силу Т., действующую на данную частицу со стороны многих др. частиц (или от непрерывного распределения вещества в некоторой области пространства), надо векторно сложить силы, действующие со стороны каждой частицы (проинтегрировать в случае непрерывного распределения вещества). Таким образом, в ньютоновской теории Т. справедлив принцип суперпозиции. Ньютон теоретически доказал, что сила Т. между двумя шарами конечных размеров со сферически симметричным распределением вещества выражается также формулой (1), где mА и mВ — полные массы шаров, а r — расстояние между их центрами.
При произвольном распределении вещества сила Т., действующая в данной точке на пробную частицу, может быть выражена как произведение массы этой частицы на вектор g, называемый напряжённостью поля Т. в данной точке. Чем больше величина (модуль) вектора g, тем сильнее поле Т.
Из закона Ньютона следует, что поле Т. — потенциальное поле, то есть его напряжённость g может быть выражена как градиент некоторой скалярной величины j, называемым гравитационным потенциалом:
g = —grad j. (2)
Так, потенциал поля Т. частицы массы m может быть записан в виде:
. (3)
Если задано произвольное распределение плотности вещества в пространстве, r = r (r ), то теория потенциала позволяет вычислить гравитационный потенциал j этого распределения, а следовательно, и напряжённость гравитационного поля g во всём пространстве. Потенциал j определяется как решение Пуассона уравнения .
Dj = 4pG r, (4)
где D — Лапласа оператор .