Величину (часто называют коэффициент полезного действия (кпд). В условиях стационарной работы системы и при нулевой полезной мощности уравнение баланса энергии в реакторе имеет вид:
h(Po + Pr + Pt ) = Pr + Pt , (1)
где Po – мощность ядерного энерговыделения, Pr – мощность потока излучения и Pt – энергетическая мощность потока ускользающих частиц. Когда левая часть написанного равенства делается больше правой, реактор перестаёт расходовать энергию и начинает работать как термоядерная электростанция. При написании равенства (1) предполагается, что вся рекуперированная энергия без потерь возвращается в реактор через инжектор вместе с потоком подводимого нагретого топлива. Величины Ро , Pr и Pt известным образом зависят от температуры плазмы, и из уравнения баланса легко вычисляется произведение
n t = f (T ), (2)
где f (T ) для заданного значения кпд h и выбранного сорта топлива есть вполне определённая функция температуры. На рис. 2 приведены графики f (T ) для двух значений h и для обеих ядерных реакций. Если величины h, достигнутые в данной установке, расположатся выше кривой f (T ), это будет означать, что система работает как генератор энергии. При h = 1 /3 энергетически выгодная работа реактора в оптимальном режиме (минимум на кривых рис. 2 ) отвечает условию («критерии Лоусона»):
реакции (d, d): n t >1015 см -3 ·сек ;
Т ~ 109 К; (3)
реакции (d, t): n t > 0, 5·1015 см -3 ·сек,
Т ~ 2·108 К.
Т. о., даже в оптимальных условиях, для наиболее интересного случая – реактора, работающего на равнокомпонентной смеси дейтерия и трития, и при весьма оптимистических предположениях относительно величины (необходимо достижение температур ~ 2·108 К. При этом для плазмы с плотностью ~ 1014 см -3 должны быть обеспечены времена удержания порядка секунд. Конечно, энергетически выгодная работа реактора может происходить и при более низких температурах, но за это придется «расплачиваться» увеличенными значениями n t.
Итак, сооружение реактора предполагает: 1) получение плазмы, нагретой до температур в сотни миллионов градусов; 2) сохранение плазменной конфигурации в течение времени, необходимого для протекания ядерных реакций. Исследования по У. т. с. ведутся в двух направлениях – по разработке квазистационарных систем, с одной стороны, и устройств, предельно быстродействующих, с другой.
У. т. с. с магнитной термоизоляцией. Рассмотрим сначала первый вариант. Энергетический выход на уровне 105 квт/м 3 достигается для (d, t) реакций при плотности плазмы ~ 1015 см -3 и температуре ~ 108K . Это означает, что размеры реактора на 106 –107 квт