Становление физики (до 17 в.). Физические явления окружающего мира издавна привлекали внимание людей. Попытки причинного объяснения этих явлений предшествовали созданию Ф. в современном смысле этого слова. В греко-римском мире (6 в. до н. э. – 2 в. н. э.) впервые зародились идеи об атомном строении вещества (Демокрит , Эпикур , Лукреций ), была разработана геоцентрическая система мира (Птолемей ), установлены простейшие законы статики (правило рычага), открыты закон прямолинейного распространения и закон отражения света, сформулированы начала гидростатики (закон Архимеда), наблюдались простейшие проявления электричества и магнетизма.
Итог приобретённых знаний в 4 в. до н. э. был подведён Аристотелем . Физика Аристотеля включала отдельные верные положения, но в то же время в ней отсутствовали многие прогрессивные идеи предшественников, в частности атомная гипотеза. Признавая значение опыта, Аристотель не считал его главным критерием достоверности знания, отдавая предпочтение умозрительным представлениям. В средние века учение Аристотеля, канонизированное церковью, надолго затормозило развитие науки.
Наука возродилась лишь в 15–16 вв. в борьбе со схоластизированным учением Аристотеля. В середине 16 в. Н. Коперник выдвинул гелиоцентрическую систему мира и положил начало освобождению естествознания от теологии. Потребности производства, развитие ремёсел, судоходства и артиллерии стимулировали научные исследования, опирающиеся на опыт. Однако в 15–16 вв. экспериментальные исследования носили в основном случайный характер. Лишь в 17 в. началось систематическое применение экспериментального метода в Ф., и это привело к созданию первой фундаментальной физической теории – классической механики Ньютона.
Формирование физики как науки (начало 17 – конец 18 вв.).
Развитие Ф. как науки в современном смысле этого слова берёт начало с трудов Г. Галилея (1-я половина 17 в.), который понял необходимость математического описания движения. Он показал, что воздействие на данное тело окружающих тел определяет не скорость, как считалось в механике Аристотеля, а ускорение тела. Это утверждение представляло собой первую формулировку закона инерции. Галилей открыл принцип относительности в механике (см. Галилея принцип относительности ), доказал независимость ускорения свободного падения тел от их плотности и массы, обосновывал теорию Коперника. Значительные результаты были получены им и в др. областях Ф. Он построил зрительную трубу с большим увеличением и сделал с её помощью ряд астрономических открытий (горы на Луне, спутники Юпитера и др.). Количественное изучение тепловых явлений началось после изобретения Галилсем первого термометра.
В 1-й половине 17 в. началось успешное изучение газов. Ученик Галилея Э. Торричелли установил существование атмосферного давления и создал первый барометр. Р. Бойль и Э. Мариотт исследовали упругость газов и сформулировали первый газовый закон, носящий их имя. В. Снеллиус и Р. Декарт открыли закон преломления света. В это же время был создан микроскоп. Значительный шаг вперёд в изучении магнитных явлений был сделан в самом начале 17 в. У. Гильбертом . Он доказал, что Земля является большим магнитом, и первый строго разграничил электрические и магнитные явления.
Основным достижением Ф. 17 в. было создание классической механики. Развивая идеи Галилея, Х. Гюйгенса и др. предшественников, И. Ньютон в труде «Математические начала натуральной философии» (1687) сформулировал все основные законы этой науки (см. Ньютона законы механики ). При построении классической механики впервые был воплощён идеал научной теории, существующий и поныне. С появлением механики Ньютона было окончательно понято, что задача науки состоит в отыскании наиболее общих количественно формулируемых законов природы.
Наибольших успехов механика Ньютона достигла при объяснении движения небесных тел. Исходя из законов движения планет, установленных И. Кеплером на основе наблюдений Т. Браге , Ньютон открыл закон всемирного тяготения (см. Ньютона закон тяготения ). С помощью этого закона удалось с замечательной точностью рассчитать движение Луны, планет и комет Солнечной системы, объяснить приливы и отливы в океане. Ньютон придерживался концепции дальнодействия, согласно которой взаимодействие тел (частиц) происходит мгновенно непосредственно через пустоту; силы взаимодействия должны определяться экспериментально. Им были впервые четко сформулированы классические представления об абсолютном пространстве как вместилище материи, не зависящем от её свойств и движения, и абсолютном равномерно текущем времени. Вплоть до создания теории относительности эти представления не претерпели никаких изменений.
В это же время Гюйгенс и Г. Лейбниц сформулировали закон сохранения количества движения; Гюйгенс создал теорию физического маятника,