и импульсов pi частиц системы задаётся функция распределения частиц по координатам и импульсам, f (ri , pi ,..., rN , pN , t ), имеющая смысл плотности вероятности обнаружения наблюдаемых значений координат и импульсов в определённых малых интервалах в данный момент времени t (N – число частиц в системе). Функция распределения f удовлетворяет уравнению движения (уравнению Лиувилля), имеющему вид уравнения непрерывности в пространстве всех r , и pi (т. е. в фазовом пространстве ). Уравнение Лиувилля однозначно определяет f в любой последующий момент времени по заданному её значению в начальный момент, если известна энергия взаимодействия между частицами системы. Функция распределения позволяет вычислить средние значения плотностей вещества, энергии, импульса и их потоков, а также отклонения их от средних значений – флуктуации . Уравнение, описывающее эволюцию функции распределения для газа, было впервые получено Больцманом (1872) и называлось кинетическим уравнением Больцмана .
Гиббс получил выражение для функции распределения произвольной системы, находящейся в равновесии с термостатом (каноническое Гиббса распределение ). Эта функция распределения позволяет по известному выражению энергии как функции координат и импульсов частиц (функции Гамильтона) вычислить все потенциалы термодинамические , что является предметом статистической термодинамики.
Процессы, возникающие в системах, выведенных из состояния термодинамического равновесия, необратимы и изучаются в статистической теории неравновесных процессов (эта теория вместе с термодинамикой неравновесных процессов образует кинетику физическую ). В принципе, если функция распределения известна, можно определить любые макроскопические величины, характеризующие систему в неравновесном состоянии, и проследить за их изменением в пространстве с течением времени.
Для вычисления физических величин, характеризующих систему (средние плотности числа частиц, энергии и импульса), не требуется знания полной функции распределения. Достаточно более простых функций распределения: одночастичных, дающих среднее число частиц с данными значениями координат и импульсов, и двухчастичных, определяющих взаимное влияние (корреляцию) двух частиц. Общий метод получения уравнений для таких функций был разработан (в 40-х гг. 20 в.) Боголюбовым, Борном, Г. Грином (англ. физик) и др. Уравнения для одночастичной функции распределения, построение которых возможно для газов малой плотности, называются кинетическими. К их числу относится кинетическое уравнение Больцмана. Разновидности уравнения Больцмана для ионизованного газа (плазмы ) – кинетические уравнения Ландау и А. А. Власова (30–40-е гг. 20 в.).
В последние десятилетия всё большее значение приобретает исследование плазмы. В этой среде основную роль играют электромагнитные взаимодействия заряженных частиц, и лишь статистическая теория, как правило, способна дать ответ на различные вопросы, связанные с поведением плазмы. В частности, она позволяет исследовать устойчивость высокотемпературной плазмы во внешнем электромагнитном поле. Эта задача чрезвычайно актуальна в связи с проблемой управляемого термоядерного синтеза .
Электродинамика.
Состояние электромагнитного поля в теории Максвелла характеризуется двумя основными векторами: напряжённостью электрического поля Е и магнитной индукцией В, являющимися функциями координат и времени. Электромагнитные свойства вещества задаются тремя величинами: диэлектрической проницаемостью e, магнитной проницаемостью (и удельной электропроводностью s, которые должны быть определены экспериментально. Для векторов Е и В и связанных с ними вспомогательных векторов электрической индукции D и напряжённости магнитного поля Н записывается система линейных дифференциальных уравнений с частными производными – Максвелла уравнения . Эти уравнения описывают эволюцию электромагнитного поля. По значениям характеристик поля в начальный момент времени внутри некоторого объёма и по граничным условиям на поверхности этого объёма можно найти Е и В в любой последующий момент времени. Эти векторы определяют силу, действующую на заряженную частицу, движущуюся с определённой скоростью в электромагнитном поле (1 « ... 25 26 27 28 » ... 242