образца среды или спектральную чувствительность фотоприёмника в определённый момент времени. Развитие лазерной техники ставит перед Ф. и. задачи разработки новых методов измерений, таких, как детектирование световых импульсов нелинейными кристаллами (см. Нелинейная оптика ), автоматическая обработка получаемых результатов измерения и создание приёмников излучения с высоким временным разрешением и с широким диапазоном линейной зависимости реакции приёмника от изменения воздействующего потока излучения.
Импульсные методы измерения излучений, обеспечивающие высокие точность и чувствительность, применяются и для получения фотометрических характеристик тел (коэффициент пропускания, отражения коэффициента и др.). Эти методы весьма перспективны в связи с применением в схемах фотометров цифровой вычислительной техники, быстродействие которой согласуется с длительностью импульсов распространённых источников излучения (обработка информации ведётся в т. н. реальном масштабе времени).
Лит.: Волькенштейн А. А., Кувалдин Э. В., Фотоэлектрическая импульсная фотометрия, Л., 1975.
Э. В. Кувалдин.
Фотометри'я пла'менная, один из видов эмиссионного спектрального анализа . Применяется главным образом для количественного определения в растворах атомов многих металлов и редкоземельных элементов по их спектральным линиям или полосам. Источником возбуждения спектров является пламя светильного газа, водорода, ацетилена или дициана. Анализируемый раствор инжектируется в пламя в виде аэрозоля в токе кислорода или воздуха. Наиболее распространено водород-кислородное пламя, характеризующееся достаточно высокой температурой (2900 К), малой интенсивностью собственного излучения и отсутствием в пламени твёрдых частиц при неполном сгорании.
Определяемое излучение выделяется узкополосным фильтром или монохроматором , в котором в качестве диспергирующего элемента применяется призма или дифракционная решётка. Благодаря сравнительной простоте спектров пламени и высокой стабильности излучения пламени измерение интенсивностей спектральных линий производится почти исключительно фотоэлектрическим способом. Приёмником излучения служит фотоэлемент или фотоэлектронный умножитель, а регистрирующим прибором – гальванометр или самописец. Регистрация спектральных линий или полос на самописце обычно проводится методом сканирования, полученная запись выражает зависимость интенсивности излучения от длины волны. Мерой концентрации исследуемого элемента служит интенсивность его спектральной линии. Зависимость интенсивности линий от концентрации устанавливается по результатам фотометрирования спектров эталонных растворов. Преимущества Ф. п. – точность, скорость и высокая чувствительность (для щелочных элементов 0,01 мкг/мл, для щёлочноземельных – 0,1 мкг/мл ). Для анализа по методу Ф. п. применяют спектрофотометры с автоматической регистрацией спектров и выдачей результатов.
Лит. см. при ст. Спектральный анализ .
Фотометрия фотографическая
Фотометри'я фотографи'ческая, раздел фотометрии , в котором рассматриваются методы количественной оценки излучения с помощью фотографических материалов . Методы Ф. ф. применяют преимущественно при малой интенсивности измеряемого излучения, например в астрономии.
Лит.: Миз К., Джеймс Т., Теория фотографического процесса, пер. с англ., Л., 1973.
Фотомонта'ж (от фото... и монтаж ), метод печатания фотоснимка с двух или нескольких негативов; изображение, полученное этим методом. При Ф. нередко используют графический материал. При механическом способе Ф. из фотографий вырезают нужные изображения, подгоняют их путем увеличения под необходимый масштаб, склеивают на листе бумаги, ретушируют, затем переснимают. При проекционном способе Ф. на фотобумаге последовательно печатают изображения с ряда негативов. При этом нередко используют т. н. маски, последовательно перекрывающие те или иные части негатива. Ф. широко применяется при изготовлении плакатов, реклам, политических карикатур и т.д. Среди крупнейших мастеров Ф.: А. С. Житомирский, Г. Г. Клуцис, В. Б. Корецкий, Л. М. Лисицкий, А. М. Родченко (СССР), Дж. Хартфилд (ГДР).
Лит.: Fotografie 73. Специальное ревю художественной фотографии, 1973, № 3.

А. М. Родченко. Иллюстрация к поэме В. В. Маяковского «Про это». Издано в 1923.
Фото'н (от греч. phos, родительный падеж photós – свет), элементарная частица, квант электромагнитного излучения (в узком смысле – света). Масса покоя m 0 Ф. равна нулю (из опытных данных следует, что во всяком случае m 0 (4×10-21