изопропиловый спирт). Источником углерода в большинстве случаев является также CO2 , но наряду с этим и некоторые органические соединения (например, ацетат). Т. о., Ф. у разных организмов может протекать с использованием различных доноров (ДН2 ), акцепторов (А) электронов и водорода и может быть представлен схематически обобщённым уравнением:
Д×Н2 + А
AH2 + Д,
где AH2 – продукты Ф.
Структурные особенности фотосинтетического аппарата. Высокая эффективность Ф. высших зелёных растений обеспечивается совершенным фотосинтетическим аппаратом, основа которого – внутриклеточные органеллы – хлоропласты (в клетке зелёного листа их 20–100). Они окружены двуслойной мембраной. Внутренний слой её построен из уплощённых мешочков или пузырьков, называемых тилакоидами, которые часто упакованы в стопки, составляют граны, соединённые между собой одиночными межгранными тилакоидами. Тилакоиды состоят из собственно фотосинтетических мембран, представляющих собой биомолекулярные липидные слои и мозаично вкрапленные в них липопротеидопигментные комплексы, образующие фотохимически активные центры, и содержат также специальные компоненты, участвующие в транспорте электронов и образовании аденозинтрифосфата (АТФ). Часть хлоропласта, находящаяся между тилакоидами строма, содержит ферменты, катализирующие темновые реакции Ф. (например, превращение углерода, азота, серы, биосинтез углеводов и белков). В строме откладывается образуемый при Ф. крахмал. Хлоропласты имеют собственные ДНК, РНК, рибосомы , синтезирующие белки, и обладают некоторой генетической автономностью, но находятся под общим контролем ядра. фотосинтезирующие бактерии и большинство водорослей не имеют хлоропластов. Фотосинтетический аппарат большинства водорослей представлен специализированными внутриклеточными органеллами – хроматофорами , а фотосинтезирующих бактерий и сине-зелёных водорослей – тилакоидами (мембраны их содержат пигмент бактерио-хлорофилл или бактериовиридин, а также др. компоненты реакций Ф.), погруженными в периферические слои цитоплазмы.
Фаза первичных превращений и запасания энергии в процессе Ф. В основе Ф. растений лежит окислительно-восстановительный процесс, в котором 4 электрона (и протона) поднимаются от уровня окислительно-восстановительного потенциала, соответствующего окислению воды (+ 0,8 в ) до уровня, соответствующего восстановлению CO2 с образованием углеводов (– 0,4 в ). При этом увеличение свободной энергии реакции восстановления CO2 до уровня углеводов составляет 120 ккал/моль, а суммарное уравнение Ф. выражается как:
CO2 + H2 O
C (H2 O) + O2 + 120 ккал/моль.
Энергия моля квантов (Эйнштейна) красной части спектра составляет около 40 ккал/моль. Т. о., для Ф., идущего в соответствии с приведённым уравнением, было бы достаточно поглощения энергии 3 квантов на молекулу CO2 (или на выделение молекулы O2 ). Однако в окислительно-восстановительной реакции от воды к CO2 должны быть перенесены 4 электрона, причём перенос каждого из них осуществляется в ходе двух последовательных фотохимических реакций. Поэтому квантовый расход при оптимальных условиях составляет 8–12 квантов на молекулу O2 , а максимальная эффективность преобразования энергии красного света – около 30° %. В полевых условиях вследствие неполного поглощения света, энергетических затрат на дыхание и др. потерь, а также ограниченности вегетационного периода эффективность усвоения солнечной энергии с.-х. растениями в умеренных широтах обычно не выше 0,5–1,3%. Сопоставление этих цифр c теоретическим максимальным значением указывает на существование значительных резервов, которые могут быть использованы в будущем. Для некоторых культур с.-х. растений удаётся в специальных условиях повысить энергетическую эффективность до 5–6% и даже выше (при культивировании водорослей до 7–10%).
Ни CO2 , ни вода непосредственно не поглощают свет, посредником во взаимодействии этих соединений с квантами служит хлорофилл а, включенный в структуру хлоропласта или хроматофора и образующий функциональные фотосинтетические единицы, состоящие из нескольких сотен молекул пигмента и реакционных центров. Основная часть сопровождающих пигментов (хлорофилл b, каротиноиды, фикобилины и др. и коротковолновые формы хлорофилла а ) выполняет функцию светособирающей антенны. При поглощении квантов их молекулы переходят в возбуждённое состояние, которое путём миграции энергии передаётся на молекулу хлорофилла а, находящуюся в реакционном центре. Эффективность передачи энергии обусловлена близким расположением молекул, а также наличием нескольких агрегированных форм хлорофилла а, участвующих в формировании реакционных центров и образующих нисходящую лестницу энергетических уровней. Возможен полупроводниковый перенос электрона по агрегированному пигменту. В реакционном центре происходит основной акт Ф. – разделение зарядов с последующим образованием первичного окислителя и первичного восстановителя. Существуют два типа центров (рис. 1 ), один из которых включен в пигментную фотосистему I (ФС I), а др. – в фотосистему II (ФС II). В фотореакции, связанной с разложением воды, участвует ФС II: пигментом её центра служит хлорофилл а с максимумом поглощения 680 нм, гипотетическим первичным восстановителем – Q (вероятно, цитохром ), а первичным окислителем – сложный комплекс Z. Возбуждение пигментной молекулы центра P680 сопровождается разделением зарядов и образованием окисленного Z+ , который участвует в окислении воды и выделении O2 . Полагают, что в систему разложения воды, пока мало изученную, входят неизвестные ферменты, ионы