, б) с 2 магнитопроводами. В первых при пропускании через управляющую обмотку кратковременного импульса тока (положительной либо отрицательной полярности) сердечник намагничивается и контактные пластины под действием магнитного поля замыкаются. Для размагничивания сердечника (и размыкания пластин) через управляющую обмотку пропускают импульс тока обратной полярности (при этом ток не должен превышать значения, достаточного для вторичного замыкания пластин вследствие перемагничивания сердечника). Во вторых для замыкания пластин используют параллельное намагничивание сердечников (при котором через обе управляющие обмотки пропускают токи, одинаковые по величине и направлению), а для их размыкания – последовательное намагничивание (пропускают токи, равные по величине, но направленные противоположно). В таких Ф. ток размыкания не имеет ограничения сверху.

  Существуют также Ф. с несколькими управляющими обмотками. В некоторых Ф. применяют герконы с пластинами из магнитного материала с прямоугольной петлей гистерезиса , в этом случае обходятся вовсе без сердечников (такие Ф. называются Ф. с внутренней магнитной памятью, реже – ремридами, или меморидами).

  Ток срабатывания в Ф. составляет 8–10 а , время намагничивания (размагничивания) – от 10 до 300 мксек. Ф. используют в коммутационных системах квазиэлектронных автоматических телефонных станций , в логических устройствах вычислительной техники и т.д.

  Лит.: Лутов М. Ф., Квазиэлектронные АТС, М., 1968; Ферриды, М., 1972.

  М. Ф. Лутов.

Схемы последовательного (а) и параллельного (б) ферридов: ОУ — обмотка управления; С — сердечник; П — пластины геркона.

Ферримагнетизм

Ферримагнети'зм, магнитное состояние вещества, при котором элементарные магнитные моменты , ионов, входящих в состав вещества (ферримагнетика ), образуют две или большее число подсистем – магнитных подрешёток. Каждая из подрешёток содержит ионы одного сорта с одинаково ориентированными магнитными моментами. Магнитные моменты ионов разных подрешёток направлены навстречу друг другу или, в более общем случае, образуют сложную пространственную конфигурацию (например, треугольную). Часто число ионов в одной подрешётке в кратное число раз больше, чем в другой. Простейшая модель ферримагнитной упорядоченности показана на рис. 1 . Самопроизвольная намагниченность J вещества в ферримагнитном состоянии равна векторной сумме намагниченностей всех подрешёток. Ф. можно рассматривать как наиболее общий случай магнитного упорядоченного состояния. С этой точки зрения ферромагнетизм есть частный случай Ф., когда в веществе имеется только одна подрешётка.

  Антиферромагнетизм есть частный случай Ф., когда все под решётки состоят из одинаковых магнитных ионов и J = 0. Термин «ферримагнетизм» был введён Л. Неелем (1948) и происходит от слова феррит названия большого класса окислов переходных элементов, в которых это явление было впервые обнаружено.

  Необходимым условием существования Ф. является наличие в веществе положительных ионов (катионов) элементов с незаполненной (d- или f -) электронной оболочкой, обладающих собственным магнитным моментом. Между ионами различных подрешёток должно существовать отрицательное обменное взаимодействие , стремящееся установить их магнитные моменты антипараллельно. Как правило, это взаимодействие является косвенным обменным взаимодействием, т. е. осуществляется путём обмена электронами через промежуточный немагнитный анион (например, ион кислорода, рис. 2 ).

  При высоких температурах, когда энергия теплового движения много больше обменной энергии, вещество обладает парамагнитными свойствами (см. Парамагнетизм ). Температурная зависимость магнитной восприимчивости парамагнетиков, в которых при низких температурах возникает Ф., обладает характерными особенностями, показанными на рис. 3 . Обратная восприимчивость (1/c) таких веществ следует Кюри – Вейса закону с отрицательной константой Q = D при высоких температурах, а при понижении температуры круто спадает, стремясь к нулю при Т ® Qс . В Кюри точке Qс , когда энергия обменного взаимодействия становится равной энергии теплового движения в веществе, возникает ферримагнитная упорядоченность. В большинстве случаев переход в упорядоченное состояние является фазовым переходом 2-го рода и сопровождается характерными аномалиями теплоёмкости, линейного расширения,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×