электрических свойствах атомов и молекул, природе межмолекулярных сил и элементарного акта химического взаимодействия. После открытия нем. учёным М. Боденштейном неразветвлённых цепных реакций (1913) и установления В.
Впервые термин «Х. ф.» в понимании, близком к современному, ввёл немецкий учёный А. Эйкен, опубликовав «Курс химической физики» (1930). До этого (1927) вышла книга В. Н. Кондратьева, Н. Н. Семенова и Ю. Б. Харитона «Электронная химия», название которой в известной мере раскрывает смысл термина «Х. ф.». В 1931 был организован институт химической физики АН СССР; с 1933 в США издаётся «Журнал химической физики» (Journal of Chemical Physics).
Уже с 20—30-х гг. к Х. ф. стали относить работы по изучению строения электронной оболочки атома; квантово-механической природы химических сил; строения и свойств молекул, кристаллов и жидкостей; проблем химической кинетики — природы элементарных актов химического взаимодействия, свойств свободных радикалов, квантовомеханической теории реакционной способности соединений, фотохимических реакций и реакций в разрядах, теории горения и взрывов.
Современный этап в развитии Х. ф. характеризуется широким применением многочисленных весьма эффективных физических методов, дающих большой объём информации о структуре атомов и молекул и механизмах химических реакций. Это спектрально-оптические методы, масс-спектрометрия, метод молекулярных пучков, рентгеноструктурный анализ, электронная микроскопия, электромагнитные методы определения поляризуемости, магнитной восприимчивости, электронография и ионография, нейтронография и нейтроно-спектроскопические методы, электронный парамагнитный резонанс, ядерный магнитный резонанс, ядерный квадрупольный резонанс, двойные резонансы, метод спинового эха, химическая поляризация электронов и ядер, гамма-резонансная спектроскопия, методы установления структурных и динамических свойств молекул с помощью мезонов и позитронов, методы определения импульсов электронов в молекулах, импульсные методы изучения быстрых процессов (импульсный радиолиз, импульсный, в том числе лазерный, фотолиз), ударно-волновые и др. методы.
Растет значение
Большое внимание уделяется изучению механизмов элементарных актов химических превращения в газовой и конденсированной фазах. Применительно к газофазным реакциям интенсивно исследуется кинетика неравновесных процессов, важных в условиях высоких температур и глубокого вакуума, выясняется роль колебательного возбуждения молекул. Разрабатывается теория туннельных переходов в кинетике химических реакций, устанавливаются критерии, характеризующие температуры, ниже которых туннельные переходы преобладают над барьерными. Изучаются особенности процессов при температурах, близких к абсолютному нулю. Развивается химия низких температур (низкотемпературные реакции протекают направленно, с весьма высоким выходом целевых продуктов, с большими, иногда взрывными, скоростями).
Интенсивно ведутся работы по химии высоких энергий — области Х. ф., связанной с исследованиями кинетики, механизма и практических приложений процессов, в которых энергии отдельных атомов, молекул, радикалов превышают энергию теплового движения, а зачастую и энергию химических связей.
Важным разделом химико-физических исследований является
Ведутся теоретические и прикладные исследования в области низкотемпературной плазмы, разрабатываются общие принципы неравновесной кинетики химических реакций в плазме и научные основы плазмо-химической технологии (см.
Сравнительно новое направление Х. ф. — изучение химических превращений конденсированных веществ в результате их сжатия под действием ударных волн. Изучается кинетика быстрых неизотермических реакций в условиях адиабатического расширения и сжатия газов.
Возрастает роль и значение работ по ядерной химии, которая занимается изучением химических последствий ядерных процессов (ядерные реакции, радиоактивный распад), исследованиями в области химии новых трансурановых элементов, а также своеобразных систем (в частности, мезоатомов), возникающих при воздействии на вещество позитронов и мезонов. Развиваются методы
Одним из фундаментальных следствий теории цепных процессов является вывод об образовании высоких концентраций свободных атомов и радикалов в ходе цепных разветвленных реакций. Этот вывод лежит в основе многочисленных теоретических и экспериментальных работ, имеющих большое практическое значение. Развиваются исследования цепных процессов с энергетическими разветвлениями цепи. На основе таких процессов создаются химические лазеры. Новым научным направлением становится изучение влияния магнитных полей на механизм реакций с участием свободных радикалов. Сохраняет своё большое теоретическое и практическое значение изучение теплового взрыва, горения и детонации.
Большое внимание уделяется изучению кинетики и механизма химических реакций в твёрдом теле (см. также
В области