Эксито'н (от лат. excito — возбуждаю), квазичастица , представляющая собой электронное возбуждение в диэлектрике или полупроводнике, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы. Представление об Э. было введено в 1931 Я. И. Френкелем . Он объяснял отсутствие фотопроводимости у диэлектриков при поглощении света тем, что поглощённая энергия расходуется не на создание носителей тока, а на образование Э. В молекулярных кристаллах Э. представляет собой элементарное возбуждение электронной системы отдельной молекулы, которое благодаря межмолекулярным взаимодействиям распространяется по кристаллу в виде волны (экситон Френкеля). Э. Френкеля проявляются в спектрах поглощения и излучения молекулярных кристаллов (см. Спектроскопия кристаллов ). Если в элементарной ячейке молекулярного кристалла содержится несколько молекул, то межмолекулярное взаимодействие приводит к расщеплению экситонных линий. Этот эффект, называемый давыдовским расщеплением, связан с возможностью перехода Э. Френкеля из одной группы молекул в другую в пределах элементарной ячейки. Давыдовское расщепление экспериментально обнаружено в ряде молекулярных кристаллов (нафталине, антрацене, бензоле и др.).
В полупроводниках Э. представляет собой водородоподобное связанное состояние электрона проводимости и дырки (экситон Ванье—Мотта). Энергии связи E * и эффективные радиусы a * Э. Ванье—Мотта можно оценить по формулам Н. Бора для атома водорода, учитывая, что эффективные массы электронов проводимости m э и дырок m д отличаются от массы свободного электрона mo и что кулоновское взаимодействие электрона и дырки в кристалле ослаблено диэлектрической проницаемостью среды e:
E*=
эв; (1)
а * =
см .
Здесь
,
¾ Планка постоянная , е — заряд электрона. Формулы (1) не учитывают влияния сложной зонной структуры кристалла, взаимодействия электронов и дырок с фононами . Однако учёт этих факторов не меняет порядок величин E * и а *. Для Ge, Si и полупроводников типов AIII BV и AII BVI m* ~ 0,1 т о , e ~ 10, что приводит к значениям E * ~ 10¾2 эв , и а * ~ 10¾6 см. Т. о., энергии связи Э. Ванье — Мотта во много раз меньше, чем энергия связи электрона с протоном в атоме водорода, а радиусы Э. во много раз больше межатомных расстояний в кристалле. Большие значения а* означают, что Э. в полупроводниковых кристаллах — макроскопическое образование, причём структура кристалла определяет лишь параметры m* и E *. Поэтому Э. Ванье — Мотта можно рассматривать как квазиатом, движущийся в вакууме. Искажения структуры кристалла, вносимые Э. или даже большим числом Э., пренебрежимо мало. В кристаллах галогенидов щелочных металлов и инертных газов E * ~ 0,1—1 эв , а* ~ 10¾7 — 10¾8 см и образование Э. сопровождается деформацией элементарной ячейки.
Э. Ванье—Мотта отчётливо проявляются в спектрах поглощения полупроводников в виде узких линий, сдвинутых на величину E * ниже края оптического поглощения. Водородоподобный спектр Э. Ванье — Мотта впервые наблюдался в спектре поглощения Cu2 O, в дальнейшем в др. полупроводниках. Э. проявляются также в спектрах люминесценции , в фотопроводимости, в Штарка эффекте