Эргограф

Эрго'граф (от греч. érgon — работа и ...граф ), прибор для записи работы мышц при изучении динамики их работоспособности. В зависимости от исследуемых мышц различают пальцевой (рис. 1 ), кистевой, ножной, становой, глазной Э. Впервые Э. был сконструирован в 1890 итальянским физиологом А. Моссо. Принцип работы Э. заключается в регистрации с помощью специальных механических или электрических датчиков амплитуды и времени сокращения и расслабления мышц, функционирующих в заданном темпе при выполнении определенной работы, например поднятие и опускание груза, сжатие пружины, перемещение объекта фиксации между ближней и ближайшей точкой ясного видения. Обычно работу на Э. совершают до утомления, которое проявляется снижением амплитуды движений (рис. 2 ). Эргография применяется для оценки работоспособности при разных видах физического и умственного труда, при воздействии различных факторов внешней среды и др. См. также Эргометр .

Рис. 1. Эргограф Моссо пальцевой: 1 — датчик движения; 2 — записывающее устройство; 3 — салазки; 4 — части механизма для движения ленты; 5 — груз; 6 — лента для записи эргограммы.

Рис. 2. Эргограмма утомления мышцы: А — фаза оптимальной работоспособности; Б — фаза развивающегося утомления.

Эргодическая гипотеза

Эргоди'ческая гипо'теза (от греч. érgon — работа и hodós — путь) в статистической физике, состоит в предположении, что средние по времени значения физических величин, характеризующих систему, равны их средним статистическим значениям; служит для обоснования статистической физики. Физические системы, для которых справедлива Э. г., называются эргодическими. Точнее, в классической статистической механике равновесных систем Э. г. есть предположение о том, что средние по времени от функций, зависящих от координат и импульсов всех частиц системы (фазовых переменных), взятые по траектории движения системы как точки в фазовом пространстве , равны средним статистическим по равномерному распределению фазовых точек в тонком (в пределе бесконечно тонком) слое энергии вблизи поверхности постоянной энергии. Такое распределение называется микроканоническим распределением Гиббса.

  В квантовой статистической механике Э. г. есть предположение, что все состояния в тонком слое энергии равновероятны. Э. г., т. о., эквивалентна предположению о том, что замкнутая система может быть описана микроканоническим распределением Гиббса. Это один из основных постулатов равновесной статистической механики, т. к. на основании микроканонического распределения могут быть получены каноническое и большое каноническое распределения Гиббса (см. Гиббса распределение , Микроканонический ансамбль ).

  В более узком смысле Э. г. — выдвинутое Л. Больцманом в 70-х гг. 19 в. предположение о том, что фазовая траектория замкнутой системы с течением времени проходит через любую точку поверхности постоянной энергии в фазовом пространстве. В такой форме Э. г. неверна, т. к. уравнения Гамильтона (см. Механики уравнения канонические ) однозначно определяют касательную к фазовой траектории и не допускают ее самопересечения. Поэтому вместо больцмановской Э. г. была выдвинута квазиэргодическая гипотеза, в которой предполагается, что фазовые траектории замкнутой системы сколь угодно близко подходят к любой точке поверхности постоянной энергии.

  Математическая эргодическая теория изучает, при каких условиях средние по времени для динамических систем равны средним статистическим. Подобные эргодические теоремы были доказаны американскими учеными Дж. Биркгофом и Дж. Нейманом. Согласно эргодической теореме Неймана, система эргодична, когда энергетическая поверхность не может быть разделена на такие конечные области, что если начальная фазовая точка находится в одной из них, то вся ее траектория будет целиком оставаться в этой области (т. н. свойство метрической интранзитивности). Доказательство того, что реальные системы являются эргодическими, — очень сложная и еще не решенная проблема.

  Лит.: Уленбек Дж., Форд Дж., Лекции по статистической механике, пер. с англ., М., 1965, с. 126—30; Хинчин А. Я., Математические основания статистической механики, М. — Л., 1943; Тер-Хар Д., Основания статистической механики, пер. с англ., «Успехи физических наук», 1956, т. 59, в. 4, т. 60, в. 1; Arnold V. J., Avez A., Ergodic problems of classical mechanics, N. Y., 1968.

  Д. Н. Зубарев.

Эргодическая теория

Эргоди'ческая тео'рия, один из разделов общей динамики. Э. т. возникла в связи с задачей математического обоснования статистической физики, а именно — замены средних значений, взятых по фазовому пространству, временными средними. Состояние некоторой физической системы, например какого-либо объема газа, определяется импульсами и координатами составляющих ее частиц, т. е. 6N величинами (N — число частиц). Возможные состояния системы удобно представлять себе как точки 6N -мерного пространства — фазового пространства , а ее эволюцию с течением времени — как некоторое движение (траекторию) в этом пространстве. Различные физические величины, связанные с данной системой (температура, давление и т. п.), являются, как правило, функциями координат и импульсов, составляющих систему частиц, т. е. функциями точки ее фазового пространства. Такие величины называются фазовыми функциями. При сопоставлении теории с экспериментом приходится сравнивать вычисленные значения тех или иных физических величин с опытными данными. Обычно теоретически легко определяются лишь средние значения фазовых функций по всем состояниям, отвечающим данной энергии (т. н. фазовые средние). С другой стороны, так как измерение любой физической величины занимает конечное время, притом большое с точки зрения скорости

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату