. В ядре r почти постоянно в центральной части и экспоненциально убывает к периферии. Для приближённого описания эмпирических данных иногда принимают следующую зависимость r от расстояния r от центра ядра:
.
Эффективный радиус ядра R равен при этом R 0 + b. Величина b характеризует размытость границы ядра, она почти одинакова для всех ядер (» 0,5 ф ). Параметр r0 — удвоенная плотность на «границе» ядра, определяется из условия нормировки (равенства объёмного интеграла от р числу нуклонов А ). Из (2) следует, что размеры ядер варьируются по порядку величины от 10-13 см до 10-12 см для тяжёлых ядер (размер атома ~ 10-8 см ). Однако формула (2) описывает рост линейных размеров ядер с увеличением числа нуклонов лишь огрублённо, при значительном увеличении А . Изменение же размера ядра в случае присоединения к нему одного или двух нуклонов зависит от деталей структуры ядра и может быть иррегулярным. В частности (как показали измерения изотопического сдвига атомных уровней энергии), иногда радиус ядра при добавлении двух нейтронов даже уменьшается.
Энергия связи и масса ядра. Энергией связи ядра xсв называется энергия, которую необходимо затратить на расщепление ядра на отдельные нуклоны. Она равна разности суммы масс входящих в него нуклонов и массы ядра, умноженной на c2 (см. Относительности теория ):
xсв = (Zm p + Nmn - М ) c 2 . (4)
Здесь mp , mn и M — массы протона, нейтрона и ядра. Замечательной особенностью ядер является тот факт, что xсв приблизительно пропорциональна числу нуклонов, так что удельная энергия связи xсв /А слабо меняется при изменении А (для большинства ядер xсв /А » 6—8 Мэв ). Это свойство, называемое насыщением ядерных сил, означает, что каждый нуклон эффективно связывается не со всеми нуклонами ядра (в этом случае энергия связи была бы пропорциональна A 2 при A»1), а лишь с некоторыми из них. Теоретически это возможно, если силы при измененном расстоянии изменяют знак (притяжение на одних расстояниях сменяется отталкиванием на других). Объяснить эффект насыщения ядерных сил, исходя из имеющихся данных о потенциале взаимодействия двух нуклонов, пока не удалось (известно около 50 вариантов ядерного межнуклонного потенциала, удовлетворительно описывающих свойства дейтрона и рассеяние нуклона на нуклоне; ни один из них не может описать эффект насыщения ядерных сил в многонуклонных ядрах).
Независимость плотности р и удельной энергии связи ядер от числа нуклонов А создаёт предпосылки для введения понятия ядерной материи (безграничного ядра). Физическими объектами, отвечающими этому понятию, могут быть не только макроскопические космические тела, обладающие ядерной плотностью (например, нейтронные звёзды ), но, в определённом аспекте, и обычные ядра с достаточно большими А .
Зависимость xсв от А и Z для всех известных ядер приближённо описывается полуэмпирической массовой формулой (впервые предложенной немецким физиком К. Ф. Вейцзеккером в 1935):
. (5)
Здесь первое (и наибольшее) слагаемое определяет линейную зависимость xсв от A; второй член, уменьшающий xсв , обусловлен тем, что часть нуклонов находится на поверхности ядра. Третье слагаемое — энергия электростатического (кулоновского) отталкивания протонов (обратно пропорциональна радиусу ядра и прямо пропорциональна квадрату его заряда). Четвёртый член учитывает влияние на энергию связи неравенства числа протонов и нейтронов в ядре, пятое слагаемое d(A, Z) зависит от чётности чисел А и Z; оно равно:
(6)
Эта сравнительно небольшая поправка оказывается, однако, весьма существенной для ряда явлений и, в частности, для процесса деления тяжёлых ядер. Именно она определяет делимость ядер нечётных по А изотопов урана под действием медленных нейтронов (см. Ядра атомного деление ), что и обусловливает выделенную роль этих изотопов в ядерной энергетике . Все константы, входящие в формулу (5), подбираются так, чтобы наилучшим образом удовлетворить эмпирическим данным. Оптимальное согласие с опытом достигается при e = 14,03 Мэв , a = 13,03 Мэв