их фщ. единицы. Все вокруг нас подчинено тем или иным алгоритмам. Их великое множество - от самых простых до невероятно сложных. Среди простых бытовых алгоритмов мы можем назвать алгоритмы приготовления пищи (например, заварки чая, выпечки пирогов и т. п.), изготовления стола или скамейки, выращивания картофеля и т. д. Среди суперсложных можно назвать, например, алгоритм изготовления авианосца. Поэтому в обычной поварской книге перечислены алгоритмы приготовления пищи, в нотах - алгоритмы воспроизведения музыкальных произведений, а в технологических картах построения жилого дома или автомобиля, прокладки дороги - алгоритмы их построения. Все указанные нами алгоритмы были выработаны в течение практической деятельности человеком. Однако, кто же занимался составлением алгоритмов для построения фн. систем доорганической и органической организации Материи? Ведь уже алгоритмы построения атома водорода или молекулы аминокислоты являются довольно непростыми. Конечно, их никто не изобретал. Они вырабатывались сами, повинуясь железной необходимости, вытекающей из действия законов Развития Материи, и в первую очередь, ее движения по категории качества ().
По мере усложнения системных структур уже в начальный период организации живых форм Материи, продолжительность функционирования которых основана, как известно, на принципе постоянной замены в них блоков фщ. единиц, в некоторый момент организационного развития потребовался механизм, обеспечивающий создание таких блоков в сравнительно короткое время с тем, чтобы заменять ими отфункционировавшие в фн. ячейках блоки без нарушения фн. свойств всей данной системы в целом. С этой целью в системах стала все более выделяться подсистема, записывающая алгоритмы построения того или иного блока, их пространственного расположения в общей структуре и временной последовательности перехода фщ. единиц данного уровня из одних фн. ячеек в другие. Как известно, в доорганических системах их структуры имели долговременный характер, при этом эти суммативные системные образования составлялись из фщ. единиц нижних подуровней в соответствии с их, главным образом, физическими свойствами при одновременном аккумулировании большого количества энергии. Распад таких систем происходил через большой отрезок времени, имел разовый нерегулярный характер и служил лишь целям общего перестроения макросистемы в целом. Позднее, на молекулярном организационном уровне порядок составления системных образований помимо физических стал регулироваться также и химическими свойствами входящих в них фщ. единиц, при этом с повышением системной организации происходило все меньшее аккумулирование суммарной энергии (хотя из расчета на одну фщ. единицу каждого последующего уровня аккумулирование энергии значительно возрастало), а сами соединения носили все более кратковременный характер. В надмолекулярных системах, обладавших все большим количеством органических свойств, запись информации об алгоритмах построения и функционирования стали принимать на себя фн. подсистемы, условно названные впоследствии нуклеотидами.
Итак, в процессе Развития Материи по организационному уровню З на отдельных участках поверхности планеты Земля с определенного момента времени стали появляться высокомолекулярные материальные образования, способные нести различную функциональную нагрузку нового спектра. Они включали в структуры своих подсистем следующие органические химические соединения: белки, жиры, углеводы, нуклеиновые кислоты и другие низкомолекулярные органические вещества. Кроме того, в них входили и неорганические вещества, главным из которых была вода. По мере продвижения актуальной точки Развития Материи по ординате времени, число новых системных образований сбалансированно увеличивалось, совершенствовалась их системная структура. Системы уровня З не были организационно оторваны от предыдущих уровней, а органически включали их системные образования в качестве фщ. единиц в свои фн. ячейки. Ввиду того, что пространственное развитие систем оргуровня З было ограничено не только площадью Земной поверхности, но также и другими факторами физического и химического характера (такими, как уровень получаемой лучистой энергии Солнца, различный на разных участках Земной поверхности; наличие в данном месте необходимого спектра системных образований предыдущих уровней и т.д.), постоянно существовало положение, при котором . Вследствие этого Развитие Материи вынуждено было осуществляться практически только за счет движения по координате качества (), в результате чего совершенствование систем оргуровня З продолжало носить относительно ускоренный характер. Результатом этого процесса явилось появление большого числа разнообразных по форме и по функциональному значению, но однотипных по системному строению образований, которые в современном представлении мы объединяем в едином понятии - органическая клетка.
Как известно, у разных клеток обнаруживается сходство не только в строении, но и в химическом составе, что указывает на то, что их происхождение было подчинено единым законам Развития Материи. Среднее содержание химических элементов в клетках таково (в %):
кислород65 - 75
углерод15 - 18
водород8 - 10
азот1,5 - 3,0
фосфор0,2 - 1,0
калий0,15 - 0,4
сера0,15 - 0,2
хлор0,05 - 0,1
кальций0,04 - 2,0
магний0,02 - 0,03
натрий0,02 - 0,03
железо0,01 - 0,015
цинк0,0003
медь0,0002
йод0,0001
фтор0,0001
Из 104 элементов периодической системы Менделеева в клетках обнаружено более 60. Атомы кислорода, углерода, водорода и азота заполняют 98% фн. ячеек клеточных подсистем. 1,9% предоставлены атомам калия, серы, фосфора, хлора, магния, натрия, кальция и железа. Менее 0,1% фн. ячеек занято прочими веществами (микроэлементами). Различные сочетания указанных элементов дают несколько типов внутриклеточных подсистемных образований, которые каждая клетка включает в свои фн. ячейки в качестве фщ. единиц в следующих пропорциях (в %):
Неорганические
вода 70 - 80
неорганические
вещества1,0 - 1,5
Органические
белки10 - 20
жиры1,0 - 5,0
углеводы0,2 - 2,0
нуклеиновые кислоты1,0 - 2,0
АТФ и др. низкомолеку
лярные органические
вещества0,1 - 0,5
Все указанные вещества, сами сложные в структурном отношении, не нагромождены в клетке вместе в хаотическом беспорядке, а в качестве фщ. единиц заполняют расположенные в строго определенном порядке предназначенные для каждого из них фн. ячейки ее единой структуры. Функционируя, они проделывают свои четко определенные микродвижения внутри микрообъема пространства клетки, регулируемые соответствующими внутриклеточными алгоритмами, при этом существует безусловная связь этих движений в пространстве как с абсолютным, так и с относительным течением времени. Каждое из веществ клетки в качестве фщ. единицы несет строго определенную функцональную нагрузку и имеет свои, регламентируемые соответствующими алгоритмами, периоды функционирования. Все их разнообразное сочетание представляет собой единый тонко отрегулированный клеточный механизм.
К наиболее простым структурным внутриклеточным образованиям относятся углеводы, жиры,