теории квантов», произнесенной в Стокгольме 2 июля 1920 г. Об этом рассказывается и в изданной посмертно в 1948 г. «Научной автобиографии» Планка.
Как уже было сказано, Планк приступил к проблеме излучения в 1897 г. До этого наибольших успехов в решении этой задачи добился В. Вин. В 1893 г. он нашел формулу для объемной плотности невидимого излучения в виде функции
где f — функция, остающаяся неопределенной. Из этой формулы вытекал закон смещения ? mах Т = const.
В 1896 г. Вин пошел дальше и написал функцию в явном виде. Его закон имел вид:
Казалось бы, задача была решена. Но, во-первых, вывод Вина с теоретической точки зрения не был безупречным, и Рэлей писал в 1900 г., что «с теоретической стороны этот результат представляется мне немногим более, чем догадкой»; во-вторых, — и это главное — формула Вина хорошо оправдывалась в области высоких частот (коротких волн), но в измерениях с инфракрасными волнами, выполненными Рубенсом и Курльбаумом, «обнаружилось совершенно отличное от закона Вина поведение».
Во всяком случае Планк пошел своим путем. Он рассматривал модель черного тела, представлявшую собой совокупность электромагнитных осцилляторов, излучающих и поглощающих электромагнитную энергию каждый определенной частоты. Введя гипотезу «естественного излучения», Планк привел эту систему в соответствие с необратимостью термодинамических процессов, несмотря на то что излучение описывается обратимыми уравнениями электродинамики. 15 мая 1899 г. Планку удалось найти соотношение между объемной плотностью излучения и средней энергией осциллятора:
где U(Т) — средняя энергия осциллятора.
Планк установил соотношение между энергией и энтропией осциллятора, в основе которого, по- видимому, лежит закон Вина. Но как раз в это время измерения Рубенса и Курльбаума показали неприменимость закона Вина для длинных волн, и это поставило Планка перед трудной проблемой. Планк построил из связи энтропии и энергии некоторую величину R, которая в области применимости закона Вина оказывается пропорциональной энергии. Однако в областях длинных волн следовало принять R пропорциональной квадрату энергии.
«Таким образом, — вспоминал Планк, — первыми опытами для функции R было установлено два простых предельных вида: при малых энергиях R пропорциональна энергии, а при больших энергиях — квадрату энергии... Дело теперь состояло в том, чтобы найти точное выражение для R, которое давало бы закон распределения энергии, совпадающий с экспериментально установленным. Теперь ничего другого не оставалось, как приравнять в общем случае величину R сумме двух членов — одного линейного, а другого квадратного по энергии, так что при малых энергиях решающее значение имел первый член, а при больших — второй.
При этом была найдена новая формула для излучения, которую я представил на заседании Берлинского физического общества 19 октября 1900 г. и рекомендовал проверить».
Формула, найденная Планком, имела вид:
Рубенс немедленно после заседания начал сравнивать формулу Планка с данными его измерений. Утром он пришел к Планку и сообщил, что повсюду было найдено удовлетворительное совпадение его формулы с опытом. Но, как признавался Планк, метод нахождения формулы придавал ей «только формальный смысл удачно угаданного закона». И здесь Планк впервые обратился к статистике, к той самой статистике, с которой Михельсон начал поиски закона излучения, используя идеи Больцмана о связи энтропии и вероятности. Этой зависимости Планк придал следующий вид:
S = klnW,
где k — постоянная Больцмана, хотя ввел и впервые вычислил эту величину Планк. Для того чтобы ввести вероятность в закон излучения, Планку пришлось принять гипотезу, что каждый осциллятор излучает и поглощает энергию конечными порциями. Эту порцию Планк положил пропорциональной частоте ? = h? , где h — некоторая универсальная постоянная, которую Планк назвал «элементарным квантом действия». «Таким образом, — писал Планк, — и для излучения было установлено существование энтропии как меры вероятности в больцмановском смысле».
Однако при подсчете вероятности Планку пришлось отойти от метода Больцмана, и только значительно позже выяснился смысл этого отхода: статистика квантов не является больцманов-ской. 14 декабря 1900 г. Планк доложил Берлинскому физическому обществу о своей гипотезе и новой формуле излучения
Из этой формулы, справедливой во всех областях спектра, получались и закон Стефана — Больцмана и закон смещения Вина. Для больших частот она переходила в формулу Вина, а для малых частот — в формулу:
данную Рэлеем в июле 1900 г. в небольшой статье «Замечания о законе черного излучения». Рэлей вывел эту формулу, применяя закон равномерного распределения энергии по степеням свободы.
В 1905 г. он и независимо от него Джине показали, что классическая статистика приводит не к формуле Планка, а именно к формуле Рэлея, которая стала называться с тех пор законом Рэлея — Джинса.
История закона излучения продолжалась еще и в XX в. Сам Планк как-то пытался ввести свою гипотезу в русло классических представлений. Однако это ему не удалось.
Гипотеза квантов захватывала все новые и новые области, став «царицей» современной физики.
Открытие рентгеновских лучей, радиоактивности, электрона, радия, кванта действия определило характер развития физики XX в. Начиналась научная революция.
Открытие радиоактивных преврещений. Идея атомной энергии
Открытия конца XIX в. и первого пятилетия XX в. привели к революции в физическом миропонимании. Рухнуло представление о неизменных атомах, о массе как неизменном количестве вещества, о законах Ньютона как незыблемых устоях физической картины мира, об абсолютных пространстве и времени, в непрерывных процессах была обнаружена дискретность, прерывность.
Представление о неизменных, неразрушимых атомах, существовавшее в физике и философии со времен Демокрита, было разрушено открытием радиоактивности. Уже в самом начале исследований радиоактивности Мария Склодовская-Кюри писала: «Радиоактивность урановых и ториевых соединений представляется атомнымт, свойствами... Я исследовала с этой точки зрения урановые и ториевые соединения и произвела множество измерений их активности при различных условиях. Из совокупности этих измерений выходит, что радиоактивность этих соединений действительно есть атомное свойство. Она представляется здесь связанной с наличностью атомов обоих рассматриваемых элементов и не уничтожается ни переменой физического состояния, ни химическими преобразованиями».
Таким образом, оказалось, что атомы урана, тория и позднее открытых полония и радия не являются мертвыми кирпичиками, а обладают активностью, испускают лучи. Природа этих лучей была исследована рядом ученых, но первым обнаружил сложный состав радиоактивных лучей Резерфорд. В опубликованной в 1899 г. статье «Излучение урана и вызываемая им электропроводность» он показал электрическим методом, что излучение урана имеет сложный состав.
Одну из пластин конденсатора покрывали порошком солей урана и соединяли с полюсом батареи, вторую соединяли с квадрантом квадрантного электрометра, другую пару квадрантов которого подключали к