4.1. Анатомо-биомеханические основы рукопашного боя

4.1.1. Анатомо-функциональные особенности опорно-двигательного аппарата

Как уже говорилось, все жизненные явления реализуются во времени и пространстве. Перемещения человека в пространстве и исполнение двигательных функций обеспечивается опорно-двигательной системой человеческого тела. Опорно-двигательный аппарат человека включает три по-разному организованные подсистемы: костную, или скелет, связочно-суставную и мышечную. Первые две — скелет и связочно-суставной аппарат — представляют собой пассивную часть системы, а мышечная — активную.

Костная система

Костная система (или скелет) — это комплекс костей организма, образующих его твердую основу. Скелет имеет в основном механическое значение. В образовании скелета взрослого человека принимает участие более 200 костей.

Из курса биологии известно, что структурно-функциональной единицей живых существ является клетка. В свою очередь, система клеток и неклеточных структур, обладающих общностью строения и происхождения, специализирующаяся на выполнении определенных функций, в биологии называется тканью. В функционировании опорно-двигательной системы принимают участие следующие ткани: эпителиальная, соединительная, мышечная, нервная.

В состав костей входят все виды тканей, но соединительная является преобладающей. Она представлена костной и хрящевой тканями. Для строения таких тканей характерным является то, что в них мало клеток, но много неклеточных структур. Неклеточные структуры костной ткани состоят из органических соединений (осеин и оссемукоид), придающих кости эластичность, и неорганических (соли, главным образом, кальция), придающих кости прочность, упругость.

Хрящевая ткань (гиалиновый хрящ) покрывает суставные концы костей, т. е. суставные поверхности. Основная ее функция — обеспечить легкое скольжение суставных поверхностей и амортизировать толчки, передающиеся по осям суставов.

Собственно кость не является монолитным образованием, подобным камню или металлической конструкции. Микроскопически кость состоит из остеонов — костных клеток и костных пластинок (трабекул), обеспечивающих прочностные и другие механические свойства кости. Остеоны обеспечивают рост кости, ее восстановление после травм, приспособление к возрастающей нагрузке и т. д. Кроме того, в течение всей жизни человека происходит постоянная смена клеточного и солевого состава костей. Кость — живой орган, как и любой другой орган человеческого тела.

Остеоны перестраивают кость на протяжении жизни в связи с клима-то-географической средой обитания, с механическими условиями функционирования кости, возрастом, особенностями питания и другими факторами.

Возникающие в результате действия остеонов и отложения солей тра-бекулы не располагаются в теле кости хаотично. Их расположение наилучшим образом отвечает прилагаемым механическим нагрузкам. Оно отличается на разных участках кости и обеспечивает функциональную устойчивость, увеличивает прочностные свойства кости при сдавливании, изгибе и растяжении.

Кости классифицируются на трубчатые, имеющие внутри костномозговую полость; губчатые, не имеющие костномозговой полости и на разрезах похожие на поролон; плоские и смешанные.

Трубчатые кости имеют тело (диафиз) и два конца (эпифизы). Внутреннее строение эпифизов трубчатых костей имеет типичное губчатое строение. Причем костные пластинки (трабекулы) губчатого вещества ориентированы по линиям сил сжатия и растяжения, располагаются друг к другу под углом в 90°, а по отношению к равнодействующей этих сил — под углом в 45°. Двигательные функции опорно- двигательной системы обеспечиваются в основном трубчатыми костями.

Кость является довольно пластичным органом, быстро изменяющим свое строение (перестраивающимся) при повышенных или пониженных нагрузках. Перестройка происходит на молекулярном, клеточном, тканевом и органном уровнях. Макроскопически видимые изменения кости при повышенной физической нагрузке определяются на рентгенограммах уже через 1 год воздействия нагрузки тренировочного режима. Максимальные перестройки структуры кости, ее внешнего вида и формы происходят через 5-5,5 лет занятий спортом, трудом и т. п.

Изменения в строении костной системы, связанные с повышенными физическими нагрузками, обусловленные физическим трудом, физическими упражнениями, спортом, другими условиями жизни, идут однонаправленно. Если физические нагрузки не приводят к ухудшению общего функционального состояния организма, то они благоприятны. Однако определить степень функционального состояния на заданный момент времени является очень сложным, а растянутость процесса изменения костной ткани во времени делает эту задачу еще более трудной. Поэтому трудно рекомендовать конкретный объем физических нагрузок на данный момент. В ряде случаев при нагрузках на тренировках «по самочувствию», при несоблюдении принципов постепенного возрастания нагрузок, «форсировании» подготовки в костях происходят нежелательные перестройки, приводящие к артрозам суставов и прекращению занятий спортом (речь идет о боксе, каратэ, самбо, тяжелой атлетике и др.).

Схема трабекулярного строения костного эпифиза

Примечательны следующие основные закономерности роста костей:

1. Механические нагрузки в разной мере изменяют продольные и поперечные размеры костей. Первые в большей степени генетически определены, чем вторые. Поэтому механические нагрузки больше отражаются на росте костей в толщину и ширину, чем в длину.

2. При нарастании механической нагрузки до определенного уровня костеобразование усиливается, при превышении этого уровня активность костеобразования снижается.

3. Уровень оптимальной механической нагрузки зависит от индивидуальных особенностей человека, т. е. от функционального состояния организма в данный момент.

Необходимо знать, что:

– рост костей и моделизация скелета (появление и выраженность бугров, бугристостей, шероховатостей, ям и ямочек) у человека завершается к 25 годам (к моменту созревания);

– начиная с 30 лет у всех людей развивается на клеточном уровне инволюция, которая со временем становится видимой и на тканевом и органном уровнях. В костной системе идут процессы либо разрежения костной ткани (остеопороз), либо уплотнения ее (остеосклероз). Оба этих процесса негативно отражаются на прочности кости.

По своей природе кость имеет большую прочность. Один квадратный миллиметр поперечного сечения костной ткани выдерживает нагрузку на сжатие до 16 кг, а на растяжение — до 12 кг. В этом проявляется общая закономерность — лучше переносить нагрузки на сжатие, чем на растяжение. Это обусловлено постоянно действующим на организм земным тяготением (гравитацией) и приспособлением всех живых существ и тканей к этому воздействию.

В отношении сопротивления на сжатие кость в 10 раз крепче хряща. Прочность кости на сжатие раза в полтора больше прочности на растяжение. Прочность гиалинового хряща на сжатие в 3 раза больше прочности на растяжение. Свежая кость в 5 раз прочнее железобетона, как на сжатие, так и на растяжение. Для раздробления большеберцовой кости давлением нужно примерно 4000 кг.

По сравнению с прочностью костной ткани прочность сухожилия на растяжение больше в 15 раз, прочность реберного хряща — в 1,5 раза. Следует заметить, что механические свойства соединительной ткани могут быть неодинаковыми не только у разных лиц, но и одного и того же человека, изменяясь в связи с условиями питания и особенностями функционального и возрастного характера.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату