оси и вокруг Солнца, изменяющего направление антенны на те или иные участки космоса. Шум же был везде и всегда.

Интенсивность этого радиосигнала оказалась равной интенсивности излучения абсолютно черного тела с температурой около 3 К (К — Кельвин, единица температуры: О К — «абсолютный нуль» — температура тела, состоящего из неподвижных атомов, а 273 К соответствует 0°С). Потратив около года на устранение неустранимой помехи, Пензиас и Вилсон поняли, что нашли то, чего не теряли, — реликтовое излучение ранней Вселенной, существование которого было предсказано Джорджем Гамовым еще в 1948 году.

По иронии судьбы, в то же самое время Роберт Дикке и Джим Пиблз из расположенного по соседству с Холмделом Принстонского университета вычислили, что такое излучение, если оно действительно существует, должно быть изотропным (не зависеть от направления) и соответствовать температуре излучения абсолютно черного тела с температурой не более 10 К, о чем Пиблз и рассказал на своей лекции в начале 1965 года. Случайно узнавший об этом Пензиас позвонил в Принстон, когда там уже почти смонтировали аппаратуру для практического поиска сигнала. Включать ее уже не имело смысла.

Теоретическое обоснование открытия взяли на себя принстонцы, но тем не менее Нобелевская премия 1978 года была присуждена Пензиасу и Вилсону именно за практическое обнаружение излучения.

Что же такое реликтовое излучение? Согласно теории Большого Взрыва Вселенная возникла приблизительно 14 млрд. лет назад в результате грандиозного взрыва, создавшего пространство и время, всю материю и энергию, которые нас окружают. Новорожденная Вселенная прошла стадию чрезвычайно быстрого расширения, названного инфляцией, которая радикально изменила пейзаж младенческого космоса. До возраста приблизительно 300 тыс. лет Вселенная была кипящим котлом из электронов, протонов, нейтрино и излучения, которые взаимодействовали между собой и составляли единую среду, равномерно заполняющую всю раннюю Вселенную. Общее расширение Вселенной постепенно охлаждало эту среду, и, когда температура упала до значения нескольких тысяч градусов, наступило время для формирования стабильных атомов. Так же в результате расширения первоначальное излучение стало куда менее интенсивным, но не пропало совсем. Именно его и обнаружили будущие нобелевские лауреаты.

Реликтовое излучение равномерно заполняет всю Вселенную, и, если мы могли бы видеть микроволны, все небо пылало бы с поразительно одинаковой яркостью во всех направлениях. Эта однородность является одной из главных причин, по которой это излучение считают теплом, оставшимся от Большого Взрыва. Но как может локальный источник создать подобную однородность? Оказывается, этому способствует сам процесс расширения пространства. Чтобы наглядно понять, как это происходит, представьте себе такую большую и очевидную неоднородность, как гора Джомолунгма. Теперь начните мысленно растягивать эту гору в ширину, оставляя высоту неизменной. Если как следует постараться и растянуть ее в ширину, скажем, на миллион километров, то получится почти идеально плоская поверхность — перепад высот в 8 км (высота горы) будет практически незаметен на таком колоссальном масштабе. Именно это и происходит при расширении пространства после Большого Взрыва — все неоднородности сглаживаются. Но возникшие после инфляции крошечные изменения в плотности материи в ранней Вселенной должны были оставить отпечаток на реликтовом излучении в форме температурных колебаний от точки к точке.

Долгое время Вселенная, остыв после Большого Взрыва, оставалась темной и холодной — ничто ее не освещало. Этот период, названный «Темными веками», закончился, когда сформировались звезды. Очень ранний возраст Вселенной, к которому относят начало формирования первого поколения звезд, впервые осветивших ее спустя всего 200 млн. лет после Большого Взрыва, привел к идее о том, что таинственный тип невидимой материи собрал газ вместе вскоре после рождения Вселенной, позволив сформироваться первым звездам и галактикам.

Скрытая масса (или темная материя) возникла почти сразу после Большого Взрыва, в отличие от знакомых нам атомов. Она слабо взаимодействует с электромагнитным излучением (чем и объясняются трудности ее обнаружения), однако, как и «нормальная» материя, обладает гравитацией, поэтому способна сама собираться в сгущения и притягивать «нормальную» материю. Темная материя, возможно, служила теми гравитационными «зернами», которые вызывали увеличение плотности энергии в небольших областях пространства. Гравитационные силы этих областей притягивали к себе все окружающее вещество, становясь зернами будущих галактик. Сегодня уже достоверно известно, что галактики окружены гало из темной материи, которые в 10 раз массивнее видимых компонентов галактик.

Возможны два сценария развития событий: концентрация материи в больших структурах с последующим формированием в них звезд или формирование звезд с последующим объединением их в большие структуры. Пока еще не известно, какой из них был реализован и что в действительности являлось источником энергии для первых источников света, осветивших Вселенную, — звезды с их термоядерным синтезом или излучение, вызванное падением материи на черные дыры.

Черные дыры могут играть важную роль на начальной стадии формирования галактик, собирая материю вместе посредством своей мощной гравитации. Новые открытия супермассивных черных дыр в центрах трех ближайших эллиптических галактик только прибавляют в этом уверенности. Такая связь, естественно, вызывает вопрос и о том, что появилось сначала — галактика или черная дыра, хотя последние данные в большей степени указывают на то, что именно черные дыры формируют вокруг себя галактики. Так что есть надежда, что спор по поводу того, что появилось раньше — «курица» (галактика) или «яйцо» (массивная черная дыра), по всей видимости, будет разрешен уже в обозримом будущем. 

Из чего состоит вселенная?

В феврале 2003 года исследователи с помощью космической обсерватории «Вилкинсон» (WMAP) представили новую, гораздо более подробную, карту точного распределения температуры реликтового излучения по всему небу. Используя новые данные и компьютерное моделирование, исследователи, воссоздав картину зарождавшейся Вселенной, установили ее возраст и состав. По их словам, Вселенная, которой сейчас 13,7 млрд. лет (с точностью до 200 млн. лет), только на 4% состоит из обычных атомов, из которых состоят звезды и планеты, остальное же — это 23% «холодной» скрытой массы и 73% не изученной пока «темной энергии».

Под скрытой массой, или темной материей, понимаются любые неизвестные частицы и/или неизлучающие тела. Понять состав скрытой массы — одна из первоочередных задач науки. Кстати, термин «темная материя» не слишком-то хорош, так как материя эта — прозрачна для излучения. Если бы она действительно была темной, то мы вообще не имели бы возможности видеть звезды. Еще более ошеломляющим было открытие темной энергии сделанное 5 лет назад. Что это такое — непонятно до сих пор, хотя предложено было уже множество объяснений, каждое из которых может оказаться правильным.

Машина времени

Мы видим наше Светило таким, каким оно было 8 минут назад (за это время его свет проходит 150 млн. км до Земли), а большинство звезд, наблюдаемых невооруженным глазом и находящихся от нас на расстояниях от 10 до 100 световых лет, — такими, какими они были от 10 до 100 лет назад. Самая близкая большая галактика, Андромеда, предстает перед нами такой, какой она была 3 млн. лет назад. Далекие же галактики «показывают» нам, какими они были несколько миллиардов лет назад. Изображения далеких объектов являются астрономическими «окаменелостями», сохранившими отпечаток их прошлого. И чтобы раскрыть тайну рождения галактик, астрономам, подобно ученым-археологам, придется «слой за слоем» удалять пласты времени. И надо сказать, за последние годы астрономам, использующим наземные телескопы, все дальше проникающим в космические глубины с целью изучения тех объектов, которые существовали на заре развития Вселенной, удалось достичь весьма впечатляющих результатов. Но даже самый большой наземный телескоп способен лишь обнаружить объекты, удаленные на большие расстояния, тогда как космический телескоп «Хаббл» может показать их форму, позволяя выделить различные типы отдаленных галактик и проследить их развитие. Подобно кадрам кинофильма, полученные «Хабблом» изображения, выстроенные в нужном порядке, показывают появление структур в младенческой Вселенной и стадии развития галактик.

Наблюдения космического микроволнового фона и развитие физики частиц высоких энергий дают представления о молодой Вселенной — не старше 1 млн. лет. Однако для промежуточного периода (от 1 миллиона и до нескольких миллиардов лет), когда начали формироваться звезды и галактики, наблюдения

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату