исследований профессора Ховарда Грина (Harvard Medical School), который в 1975 году предложил оригинальный способ культивирования и размножения клеток кожи человека в пробирке, или, как принято говорить, in vitro. Грин сумел получить многослойные пласты клеток, которые по своему строению были близки к нормальной человеческой коже, точнее, к ее верхнему слою, эпидермису.

В ходе первых экспериментов ученым удавалось получать из 1 клетки-прародительницы всего 10 дочерних, но уже через несколько лет это число возросло до 10 тысяч. Иначе говоря, из 1 см2 донорской кожи можно было получить 1м2 кожного покрова.

В 1981 году появилось описание двух успешных экспериментов по применению клеточных пластов, которые были получены в лабораторных условиях для восстановления кожи после обширных поверхностных ожогов (40—60% от общей поверхности кожи). В качестве исходного клеточного материала использовались клетки кожи самих пациентов, то есть аутологичные клетки. В настоящее время проводятся и работы в области тканевой инженерии на аллогенных, то есть донорских, клетках.

Профессия будущего

В 2000 году авторитетный американский журнал «Тайм» опубликовал список наиболее перспективных профессий наступающего десятилетия. Верхнюю строку в этом рейтинге заняла тканевая инженерия. Во многих университетах США и Западной Европы один за другим открываются центры тканевой инженерии. Обычно студенты, получая степень бакалавра на «традиционных» факультетах, завершают образование степенью магистра или доктора, специализируясь в области тканевой инженерии. Сходная система обучения работает и в нашей стране, в Пущинском государственном университете. Там ведется подготовка магистров в области тканевой инженерии, а принимают на обучение бакалавров, имеющих специальность биофизика.

Не кожей единой

Клеточные пласты (как монослойные, так и многослойные) характерны для тканей, называемых эпителиальными. Другой важный тип тканей – мезенхимальный – специфичен тем, что клетки в нем распределены в трехмерном внеклеточном матриксе. Одна из основных функций таких тканей – соединительная, связующая части организма между собой. Кожа человека состоит из верхнего защитного слоя – эпидермиса и слоя соединительной ткани – дермы. Для реконструкции соединительной ткани недостаточно только наличия необходимого количества определенного типа клеток – в этом случае нужно воссоздать внеклеточный матрикс.

Первым эту задачу решил профессор биологии Массачусетского технологического института Юджин Белл. Он приготовил раствор основного белка внеклеточного матрикса – коллагена, а затем внес в этот раствор суспензию клеток – фибробластов. И за те несколько минут, пока раствор превращался в гель, внутри него сформировались волокна, вдоль которых и распластались клетки. Самым же удивительным оказалось то, что клетки внутри этого геля могли жить более месяца, при этом кардинально реорганизуя внутреннюю структуру биоматериала. Гель уменьшился в размере в несколько раз и стал более плотным и прочным, причем структура получившегося трехмерного коллагенового геля вполне соответствовала прототипу, поэтому он мог служить аналогом соединительной ткани.

К 1980 году были независимо реконструированы основные компоненты кожи – эпидермис и дерма. А спустя недолгое время нанесением эпидермального пласта на коллагеновый гель с фибробластами in vitro был получен первый полнослойный аналог кожи.

В принципе для каждой ткани характерен совершенно уникальный набор биологических молекул, а также пространственная архитектура, которую образует внеклеточный матрикс. Теоретически можно было предположить, что если воспроизвести основные компоненты и структуру матрикса, то задача регенерации будет решена. На практике же все оказалось гораздо сложнее. Дело в том, что аналог ткани должен быть привнесен на место утраченного органа или ткани, то есть на раневую поверхность. В случае применения коллагенового геля искусственная ткань за несколько часов просто распадается под действием агрессивной раневой среды. И для того чтобы избежать этого процесса, приходится различными методами «усиливать» конструкцию материала, например, сшивать его различными агентами или добавлять синтетические полимеры. В результате получается сложный и многофункциональный материал, свойства которого не остаются неизменными, а видоизменяются по ходу процесса заживления.

Российский опыт

В России работы по реконструкции тканей и органов при помощи клеточных культур ведутся с начала 1980-х годов. Первые успешные пересадки клеток кожи были проведены в Ожоговом центре Института хирургии им. Вишневского под руководством академика АМН М.И. Кузина с привлечением сотрудников Московского института медико-биологических проблем и Института биологической физики Академии наук СССР. В дальнейшем в орбиту работ по тканевой инженерии кожи были вовлечены практически все ведущие ожоговые центры России, среди них Военно-медицинская академия (Санкт- Петербург) и Институт им. Склифосовского. Наряду с исследованиями в области клеточных культур велись разработки полимерных материалов – носителей клеток, коллагеновых пленок и гелей. В настоящее время развитие тканевой инженерии в России происходит в рамках программы по стволовым клеткам, в которой участвуют ведущие научные коллективы страны.

Плановое хозяйство

Даже если в распоряжении «медицинского инженера» находятся все необходимые компоненты, получение аналога ткани это не гарантирует. Если оперировать строительными терминами, для этого необходимы сначала проект, а потом непосредственно строители. «Строителями» в нашем случае являются сами клетки. Именно они, взаимодействуя между собой и перестраивая внеклеточное вещество, создают ткань. Причем создают, согласно своим клеточным программам. В большинстве случаев «проектировщик» лишь задает начальные и граничные условия формирования ткани, запуская процесс самоорганизации. Например, для того чтобы методами тканевой инженерии создать стенку кровеносного сосуда, приходится имитировать условия, характерные для кровеносного русла, – организовывать проток питательной среды, вызывать циклические механические возмущения (пульсовую волну) и тому подобное. Только в этих условиях клетки сосудов, размножаясь, могут сформировать необходимые аналоги. Анализ процессов реконструкции кожи позволил сформулировать основные законы тканевой инженерии и перейти к регенерации других органов in vitro. Одним из главных условий получения аналога ткани является наличие подходящего клеточного материала. Причем клетка должна обладать совершенно определенными функциональными характеристиками. Например, клетки верхнего слоя кожи для выполнения защитной функции должны синтезировать большое количество белка – кератина, а клетки сердечной мышцы – обладать способностью к сокращению.

Чудо самовосстановления

Источниками стволовых клеток являются не только эмбриональные ткани, но и постоянно регенерирующиеся ткани взрослого человека. Например, мезенхимальные стволовые клетки выделяют из костного мозга, а стволовые клетки эпидермиса кожи берут из волосяных фолликул – специализированных структур, ответственных за рост волос.

Выделение стволовых клеток из «взрослых» тканей связано с проблемой их идентификации, а значит, с поиском молекулярных маркеров (специфических белков на клеточной мембране), которые помогают распознать и отделить ее от общей клеточной массы.

Тем не менее ряд таких маркеров идентифицирован и есть возможность получать клеточные культуры из стволовых клеток взрослых тканей. Замечательным свойством «взрослых» клеток является способность к трансдифференцировке, иначе говоря, к перемене специализации. О том, что во взрослом организме существуют клетки, способные превращаться в любые другие, биологи узнали почти что случайно. После одной из пересадок женского костного мозга мужчине при последующих биохимических анализах оказалось, что в клетках печени и других органов мужчины успешно функционируют соответствующие специализированные клетки, имеющие женский набор хромосом. Так был открыт механизм уникальной способности живых организмов восстанавливать то, что «сломалось» или погибло в процессе жизнедеятельности. Так, стволовые клетки мозга способны превращаться в клетки крови, а стволовые клетки кроветворной системы могут дифференцироваться, в зависимости от молекулярных сигналов, в клетки сердечной мышцы или печени. Однако проблема эффективного распознавания и выделения стволовых клеток из общей клеточной массы, а также управление процессами дифференцировки стволовых клеток еще далеки от своего разрешения.

Универсальные солдаты

На начальных этапах реконструкции ткани клетки интенсивно размножаются, а на заключительных – приобретают специфические функции, то есть дифференцируются. В ходе культивирования происходит как бы переключение программы клетки с пролиферации (деления) на дифференцировку (специализацию). Всего в человеческом организме

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату