В наши дни бурное развитие молекулярной биологии привело к тому, что многие важные биологические закономерности, в том числе явление параллельной эволюции, временно оказались как бы за рамками 'настоящей серьезной науки' — просто потому, что их пока не удается объяснить на молекулярном уровне.
Поэтому предпринятая учеными из Гарвардского университета попытка найти молекулярные основы канализированности (ограниченности возможных путей) и повторяемости эволюции имеет большое теоретическое значение (Daniel M. Weinreigh, Nigel F. Delaney, Mark A. DePristo, Daniel L. Hartl
Бактерии приспосабливаются к антибиотикам из группы бета-лактамов (к которым относится, в частности, пенициллин) благодаря изменениям гена, кодирующего фермент бета-лактамазу. Предполагается, что мутации возникают случайно, причем вредные мутации отсеиваются отбором, а полезные закрепляются.
В ходе адаптации бактерий к цефотаксиму — антибиотику третьего поколения из группы бета- лактамов — в исходный вариант гена бета-лактамазы вносится пять вполне конкретных мутаций, в результате чего устойчивость к антибиотику возрастает в 100 000 раз. Но такой эффект дают только все пять мутаций вместе. Понятно, что одновременное появление сразу пяти 'нужных' мутаций невероятно: они должны появляться и фиксироваться последовательно, одна за другой. Значит, на пути к конечной цели организм должен пройти через четыре промежуточных состояния. Если хотя бы одно из них окажется менее выгодным, чем предыдущее, оно будет забраковано отбором, и конечная цель не будет достигнута.
Теоретически существует 5(!) = 120 различных траекторий движения от исходного состояния (отсутствие устойчивости к цефотаксиму) к конечному, то есть к очень высокой устойчивости. Экспериментальным путем ученые установили, что из 120 теоретически возможных путей последовательного приобретения пяти мутаций большинство (102) вообще не могут реализоваться, так как требуют на каком-то этапе временного снижения приспособленности (в данном случае под 'приспособленностью' понимается устойчивость к цефотаксиму). Оставшиеся 18 путей очень сильно различаются по вероятности своей реализации. Расчеты показали, что в 99 % случаев эволюция 'выберет' один из 10, а в 50 % случаев — один из двух наиболее вероятных путей.
Вполне возможно, что это правило распространяется и на эволюцию других белков. Это значит, что молекулярной эволюции свойственны высокие повторяемость и предсказуемость. Разные организмы должны независимо друг от друга двигаться по одним и тем же 'разрешенным' эволюционным траекториям. Не исключено, что аналогичные ограничения могут направлять и канализировать дарвиновскую эволюцию и на более высоких уровнях организации живого.
Приключения Protozoon (модель возникновения сложного организма из простого)
Попробуем понять, как же все-таки в ходе эволюции сложное может рождаться из простого. Для этого я хочу предложить вниманию читателей забавную мысленную модель.
Героем нашего повествования будет вымышленное, но довольно правдоподобное одноклеточное существо
Итак, прошу познакомиться: Protozoon, диплоидный (
Как у большинства реальных одноклеточных эукариот, клетка нашего
Сигнальное вещество X имеет два эффекта. В концентрации 1 оно подавляет процесс образования глазков, а в концентрации 4 и выше приводит к тому, что созревшая клетка будет делиться митозом (при меньшей концентрации — мейозом). Вещество X способно с определенной скоростью проникать сквозь мембрану (оболочку) клетки в обе стороны.
Митоз — деление эукариотической клетки, в результате которого из одной родительской клетки получаются две дочерние с таким же числом хромосом, как и у родительской. Например, митоз диплоидной клетки приводит к формированию двух диплоидных клеток.
Мейоз — 'редукционное деление' эукариотической клетки, в результате которого число хромосом сокращается вдвое. Из диплоидной родительской клетки (с двойным набором хромосом) получаются четыре гаплоидных клетки с одинарным набором хромосом. V животных таким путем образуются половые клетки — яйцеклетки и сперматозоиды.
Глазок к тому же придает клетке полярность. Это проявляется в том, что, когда клетка делится путем митоза, плоскость деления всегда располагается перпендикулярно тому диаметру клетки, на котором находится глазок. В результате глазок 'достается' одной из дочерних клеток, а другая поначалу не имеет глазка. Будем считать, что ориентация плоскости деления задается глазком при помощи выделяемого им вещества X. Концентрация этого вещества максимальна возле глазка и постепенно снижается по мере удаления от него. Иными словами, существует 'градиент концентрации' вещества X, и плоскость деления всегда перпендикулярна направлению этого градиента.
При неблагоприятных условиях зигота не образует глазка, вещество X не вырабатывается, и поэтому, если ей удастся дорасти до зрелости, она делится только мейозом и образует четыре подвижные гаметы.
Посмотрим теперь, в чем смысл этого нехитрого регуляторного контура и как складывается жизнь
Но вот у одной особи возникла мутация: утрачена способность клеток расходиться после митоза. Условия благоприятны. Что теперь будет? Сразу, без всякого отбора и дополнительных мутаций, появляется множество разных многоклеточных организмов со своими онтогенезами и жизненными циклами.