злаки. Ведь все множество одомашненных видов и сортов злаков, от кукурузы до пшеницы, должны были обрести совершенно определенный набор хозяйственных признаков. Это скороспелость, высокая продуктивность, неопадающие семена, голозерность и др. Скороспелость, то есть превращение многолетников или двухлетников в однолетники, необходима, так как урожай желательно иметь каждый год, а не через два года на третий. Неопадающие семена и неломкий колос нужны для предотвращения опадения на землю спелых семян до сбора их земледельцем. Голозерность сильно облегчает и ускоряет процесс обмолота. И все эти признаки культурные растения приобрели в результате неосознанного искусственного отбора независимо друг от друга. Такая параллельная эволюция, по-видимому, сильно облегчалась тем, что формирование многих хозяйственных признаков контролируется единичными регуляторными генами. И если этот единственный регуляторный ген отключить или изменить его работу мутацией, то сразу получится нужный признак. По-видимому, именно таким способом сформировались у многих злаков неопадающие семена и неломкие стебли. Для появления подобного признака часто бывает достаточно 'испортить' всего один регуляторный ген из семейства MADS-генов. MADS-тены — это гены растений, аналогичные по функциям Нох-генам животных. Эти гены у культурных растений имеют очень большое сходство, поэтому легко можно ожидать и появления сходных мутаций у разных растений (Н. П. Гончаров и др. Доместикация злаков Старого Света: поиск новых подходов для решения старой проблемы. // Журнал общей биологии. 2007. Т. 68. № 2. С. 126–148. http://elementy.ru/genbio/synopsisPartid=98.).

Закономерная повторяемость в неповторимом живом многообразии

В 1920 году на съезде селекционеров в Саратове Н. И. Вавилов сообщил об открытии удивительной закономерности, которой подчиняется наследственная изменчивость у разных видов и родов растений. Оказалось, что вариации в строении листьев, корней, колосьев и семян, наблюдаемые у особей любого вида, вовсе не случайны и не беспорядочны. Каждый вид имеет строго определенный набор возможных вариаций, причем эти наборы ('ряды') почти идентичны у близкородственных видов и очень похожи у представителей разных родов и даже семейств.

Изменчивость разных видов злаков можно изобразить в виде таблицы, где каждый ряд соответствует виду, а каждая колонка — определенной вариации. На основе составленной им таблицы Вавилов сформулировал 'закон гомологических рядов в наследственной изменчивости'. Самое удивительное, что закон гомологических рядов позволил даже предсказать существование таких разновидностей, которые еще не были известны науке! Точно так же, как пустые клетки менделеевской таблицы впоследствии заполнились новооткрытыми химическими элементами, свойства которых в точности совпали с предсказанными, так и пустые клетки вавиловской таблицы были заполнены открытыми природными разновидностями злаков. Главное — знать, что ищешь.

Это блестящее подтверждение пришло позже, однако уже после первого доклада Вавилова на съезде селекционеров присутствующие устроили овацию, а один известный ботаник сказал: 'Это биологи приветствуют своего Менделеева!'

Таким образом, наследственная изменчивость, составляющая основу естественного отбора и эволюции, оказалась строго упорядоченной, а вовсе не 'случайной'. Такой вывод с большим трудом укладывался в схемы классического дарвинизма. Ведь они основывались на отборе чисто случайных вариаций.

Некоторые отечественные биологи-теоретики, такие как А. А. Любищев и С. В. Мейен, придавали вавиловским гомологическим рядам огромное значение и считали, что за этим явлением скрывается некий фундаментальный закон, управляющий, возможно, не только биологической эволюцией, но и всем мирозданием. Они подчеркивали, что гомологические ряды, подобные рядам Вавилова, наблюдаются и в строении кристаллов, и в структуре органических молекул. Интересно и то, что многие признаки, изменчивость которых подчиняется вавиловскому закону, например, сходные вариации формы листьев у очень далеких друг от друга растений — цветковых, голосеменных и папоротников, не имеют явного приспособительного значения. Поэтому происхождение такого сходства трудно объяснить естественным отбором.

По-видимому, в вавиловских рядах действительно проявляются некие общие законы развития (самоорганизации) сложных систем, причем не только биологических. Система, состоящая из взаимосвязанных элементов (блоков), может существовать в различных устойчивых состояниях, переходя из одного в другое, но число этих состояний ограничено, а их характер определяется свойствами элементов и структурой их взаимодействий.

Очевидно, что дискретный и упорядоченный характер изменчивости накладывает жесткие ограничения на эволюционные возможности организмов. Поэтому существование сходных вариаций у разных видов во многом объясняет то явление, которому посвящена эта глава, — параллельную эволюцию. Сходная изменчивость предопределяет сходство эволюционных изменений у разных групп, а ограниченное число возможных вариаций ограничивает и число возможных путей эволюционного развития.

Чем же определяется дискретный характер изменчивости? Прежде всего нужно хорошо понимать, какая это сложная штука — жизнь. Чтобы выжить, любой организм должен приспосабливаться к огромному числу всевозможных внешних факторов. Известно, что никакую систему нельзя оптимизировать одновременно по многим параметрам. Неизбежно приходится что-то выбирать и чем-то жертвовать. Кроме того, организм — это целостная система, вся части которой должны работать согласованно, не мешать, а помогать друг другу. Приспособление к какому-то внешнему фактору одного органа неизбежно влияет на всю систему, так что другим органам уже приходится приспосабливаться не только к выполнению своих собственных задач, но и к произошедшему в самом организме изменению. Иначе вся сложнейшая конструкция может рассыпаться.

Но и это еще не все. Каждый многоклеточный организм развивается из одной клетки — яйца. Значит, нужно разработать такую совершенную генетическую программу развития, чтобы в результате последовательных делений одной-единственной клетки в итоге получился сложный жизнеспособный организм. А ведь еще необходимо следить за тем, чтобы жизнеспособность (то есть целостность системы) неизменно сохранялась на каждом этапе роста и развития.

Соблюсти все эти условия чрезвычайно сложно. Не случайно некоторые биологи сравнивают эволюцию с переделыванием самолета на лету. Поэтому каждое живое существо — это результат труднейшего компромисса между многими тысячами разнообразных требований, предъявляемых к системе как извне, так и изнутри.

Идея о 'компромиссном' характере организации живых существ ('метафора адаптивного компромисса' (А. П. Расницын. Процесс эволюции и методология систематики. 2002. http://www.palaeoentomolog.ru/Publ/Ras n/methodology.html.)), помогает понять многое и в строении живых существ, и в их эволюции (см. главу 'Рождение сложности').

Во-первых, становится ясно, почему далеко не о каждом признаке и свойстве живого существа можно уверенно сказать, 'зачем это нужно'. А ведь отсутствие явного адаптивного, то есть приспособительного, смысла у многих признаков всегда смущало дарвинистов. Обычно отговаривались тем, что, дескать, пока мы не знаем, зачем этот признак, но когда-нибудь обязательно узнаем. Ну а теперь становится понятным, что многие признаки появились не 'зачем', а 'потому что' — это побочные следствия компромисса. Если бы бабочки умели говорить, то на вопрос 'почему у тебя на крыльях именно такой узор, а не другой?' они могли бы с полным правом ответить: 'Так получилось'.

Почему бабочки похожи на цветы? Многих биологов-теоретиков приводил в замешательство 'детский' вопрос: почему дневные бабочки, питающиеся нектаром цветов, сами похожи на цветы, а иные еще и издают 'цветочный' аромат? Не в деталях, не до полного сходства — это не

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату