теоретики почему-то довольно долго считали их запрещенными.
Наверное, дело тут в том, что в большинстве ситуаций единственное, чего хочет добиться организм от мутационного процесса, — это чтобы он шел как можно медленнее или не шел вовсе. В стабильных благоприятных условиях это вполне разумно. Зачем менять свою наследственность, если все и так хорошо? Однако сама жизнь не позволяет долго существовать, совершенно не меняясь. Не идти вперед — значит идти назад.
Для начала вспомним, чему нас учили в школе на уроках биологии. Главный источник мутаций — ошибки, возникающие в ходе копирования ДНК.
ДНК в норме состоит из двух комплементарных цепочек нуклеотидов. Нуклеотид А всегда стоит напротив Т, Г — напротив Ц. Пары Г-Ц более прочные, они удерживаются вместе тремя водородными связями, а пары А-Т — только двумя.
Во время репликации (копирования, удвоения) две цепочки разделяются, и на каждой по принципу комплементарности синтезируется новая цепочка, как показано на рисунке. Синтез осуществляется при помощи фермента ДНК-зависимой ДНК- полимеразы. Одна из двух новых цепей синтезируется подряд, без перерывов, потому что направление ее синтеза совпадает с направлением 'расплетания' двойной спирали исходной молекулы ДНК. Вторая цепь синтезируется кусочками, задом наперед. Эти кусочки называются 'фрагментами Оказаки' (в честь их первооткрывателя, японского молекулярного биолога Редзи Оказаки, пережившего бомбардировку Хиросимы и скончавшегося в 1975 году в 45-летнем возрасте от лейкемии). В итоге получаются две одинаковые молекулы, каждая из двух комплементарных цепей.
На приведенном рисунке возникла мутация — в правой молекуле напротив одного из гуанинов (Г) случайно встал аденин (А) вместо цитозина (Ц). Скорее всего, эта мутация будет замечена и исправлена специальными ферментами, функция которых как раз и состоит в исправлении подобных ошибок. Починку 'неправильных' или поврежденных участков ДНК называют репарацией.
В нашем примере мутация возникла случайно. Впрочем, постойте. Случайно ли? Она ведь возникла на стыке двух фрагментов Оказаки, а процесс соединения этих фрагментов — некая особая операция, 'технологически' отличающаяся от других этапов репликации, расплетания спирали и присоединения комплементарных нуклеотидов. Может быть, в нашей клетке забарахлила система соединения фрагментов Оказаки? А может, она забарахлила не случайно, а потому, что на нее оказал воздействие какой-то внешний или внутренний фактор? А если он внутренний, то клетка, наверное, может как-то контролировать его? А тогда, если хорошенько разобраться, не может ли в конечном счете оказаться так, что сама клетка 'отдала команду' осуществить мутацию в данном месте ДНК? Если мы всерьез задумаемся над этими вопросами, то поймем, что было бы крайне удивительно, если бы живая клетка за 4 миллиарда лет эволюции так и не выработала никаких механизмов управления мутационным процессом. Ведь такие механизмы, во-первых, вполне возможны, во-вторых, могли бы оказаться очень полезными.
Впрочем, нет повода сомневаться в том, что значительная часть мутаций действительно возникает случайно — просто потому, что никакое копировальное устройство не может работать с абсолютной точностью. Кроме того, мутации могут происходить и без репликации, пока ДНК находится в двухцепочечном состоянии, — например, нуклеотиды могут претерпевать химические изменения под воздействием радиации, ультрафиолета или свободных радикалов, возникающих в ходе клеточного дыхания. Большинство ошибок в цепях ДНК будет замечено и исправлено, но какую-то небольшую их часть пропустит, не заметит даже самый строгий молекулярный 'корректор'.
Но мутации возникают не только потому, что невозможно копировать ДНК с абсолютной точностью. Мы привыкли думать, что мутации — это всегда некое нарушение, неправильность, ошибка, то есть что-то нежелательное, 'мешающее нормально жить'. В действительности это не всегда так. Изменение наследственной информации — неотъемлемая и необходимая часть жизни. Если бы геномы не менялись, на нашей планете, возможно, до сих пор жил бы только один вид очень примитивных микробов — тот самый Лука, общий предок всего живого (см. главу 'Происхождение жизни'). Впрочем, и он бы давно вымер, не смог бы долго продержаться с неизменным геномом. А если бы молекулы РНК копировались с абсолютной точностью на этапе 'преджизни', то и никакой Лука никогда бы не появился. Об этом, между прочим, свидетельствуют результаты экспериментов, проводимых исследователями РНК-мира. Для того чтобы в сообществе размножающихся молекул РНК зародилось что-то новое и полезное, совершенно необходимо, чтобы отдельные короткие молекулы, соединяясь в более длинные, могли обмениваться друг с другом своими участками (обмен участками между разными молекулами ДНК или РНК называется рекомбинацией). Рекомбинация — важнейший источник наследственной изменчивости наряду с 'обычными' мутациями. В опытах с колониями РНК рекомбинация происходит сама собой, бесконтрольно, но в живой клетке она находится под контролем разнообразных и сложных регуляторных систем.
Очень важно понять, что изменения наследственной информации нужны всему живому не только в геологическом масштабе времени, чтобы постепенно совершенствоваться в течение миллионов лет. Естественный отбор не может 'заглянуть' так далеко, поэтому и специальные механизмы для достижения столь отдаленных целей не могут развиться. Но наследственные изменения нужны здесь и сейчас, они необходимы нам постоянно. Особенно наглядно это видно на примере простейших живых систем — вирусов. Многие ученые, правда, не считают их живыми организмами, поскольку они не могут размножаться без помощи чужих клеток, но все же многие свойства живого у них есть. Да и кто в этом мире может похвастать абсолютной самодостаточностью? Разве что 'отважный странник', подземный микроб, о котором рассказано во второй главе.
На примере вирусов хорошо видно, как они нарочно позволяют определенному количеству мутаций совершаться при каждой репликации. Таким способом они контролируют скорость мутирования и фактически превращают эволюцию в составную часть своего жизненного цикла, чуть ли не в основной компонент своего поведения.
Вирусы-мутанты помогают друг другу в борьбе за выживание.
Большинство вирусов, вызывающих болезни человека, — РНК-содержащие. Их наследственный материал хранится в форме РНК, а не ДНК, как у всех других форм жизни. Среди немногочисленных белков, закодированных в геноме таких вирусов, присутствует фермент РНК-зависимая РНК-полимераза, синтезирующий новые копии вирусной РНК (см. главу 1).
Популяции РНК-содержащих вирусов неоднородны: они состоят из целого набора генетически различающихся линий. Такие полиморфные популяции называют 'квазивидами' — по аналогии с видами настоящих живых организмов, которые тоже всегда полиморфны. Процесс удвоения (репликации) вирусной РНК происходит с большим числом ошибок (мутаций), благодаря чему могут быстро возникать новые варианты вируса. У полиовируса — возбудителя полиомиелита — на каждый акт репликации приходится в среднем 1,9 мутаций. При этом, конечно, появляется много нежизнеспособных вариантов, однако эти потери оправданы. Высокая скорость мутирования помогает вирусам приспосабливаться к меняющимся условиям — к деятельности иммунной системы хозяина, новым лекарствам, переходам от одного хозяина к другому и из ткани в ткань.
Марко Виньюцци из Калифорнийского университета в Сан-Франциско (США) и его коллеги, изучающие полиовирусов, предположили, что дело здесь не ограничивается поиском оптимального для данной ситуации варианта генома методом 'случайного попадания'. Возможно, возникающие в пределах квазивида вариации могут помогать друг другу за счет разделения функций. Например, в одной линии может возникнуть мутация, повышающая скорость репликации вирусной РНК, в другой линии — другая мутация, повышающая, например, эффективность самосборки белковых молекул в вирусную оболочку — капсид. Поскольку обе линии живут и размножаются в одной и той же хозяйской клетке, они могут пользоваться 'достижениями' друг друга. Эффективная РНК-полимераза первой линии будет размножать и геномы второй, а более эффективные капсидные белки второй линии будут 'упаковывать' и РНК первой. Кстати, не исключено, что совместить обе эти мутации в одном и том же геноме просто невозможно. Вирусный геном очень мал, и у него не так уж много степеней свободы, то есть вариантов мутаций, совместимых с 'жизнью' вируса. Бывает даже, что у двух разных генов имеется общий кусок, настолько