различают семь основных групп запахов. Запах может быть эфирным (ацетон), камфорным (нафталин), мускусным (мускус), цветочным (запах розы), ментоловым (мята), острым (уксус) или гнилостным (запах тухлого яйца). Чтобы объяснить, каким образом мозг распознает запахи, было выдвинуто предположение, что каждая клетка функционирует как замок, к которому подходит только один ключ, соответствующий специфическому типу молекул определенной формы и величины. Позже, однако, было показано, что иногда молекулы со сходной структурой вызывают разные обонятельные ощущения. Обоняние играет важную роль в оценке потребляемой пищи. Когда нос «забит» (например, при насморке), пища кажется совсем безвкусной. Мы не способны хорошо оценивать качество и вкус пищи только в результате ее пережевывания и проглатывания — мы всегда пропускаем воздух через полость носа, где расположены обонятельные клетки. Обоняние, кроме того, играет важную роль в коммуникации животных (особенно низших): специальные железы их выделяют феромоны, позволяющие животным метить свою территорию. По- видимому, у человека эта функция обоняния в сексуальном плане приобретает еще большее значение (см. документ 11.8). Слух Стимулы, вызывающие слуховые ощущения, представляют собой волны, которые образуются в результате колебаний частиц воздуха. Вибрации какого-либо предмета вызывают поочередное образование уплотненных и разреженных зон воздуха, которые затем в виде последовательных волн распространяются в пространстве со скоростью около 330 метров в секунду (рис. А.8). Рис. А.8. Схематическое изображение звуковых волн, исходящих от камертона. Ветви камертона своими колебаниями создают последовательные сжатия и разрежения воздуха. Гребни волны соответствуют фазам сжатия, впадины — фазам разрежения. Базисная прямая соответствует среднему положению ветвей камертона. Функция уха заключается в преобразовании этих колебаний в нервные импульсы. Слуховое ощущение зависит главным образом от характеристик звуковой волны. Так, громкость звука определяется амплитудой волны, а его высота — частотой колебаний (см. группу таблиц А.1); тембр звука, который характеризует издающий его инструмент, зависит от числа и интенсивности образующихся гармоник (обертонов). Известно, что человеческое ухо может безболезненно воспринимать звук, интенсивность которого в тысячу миллиардов (1012 ) раз выше интенсивности едва слышимого звука. В логарифмическом масштабе эта разница составляет 12 бел или 120 децибел (децибел — десятая часть бела), а это значит, что, например, звук интенсивностью 100 децибел в 10 раз сильнее звука в 90 децибел и в 1000 раз сильнее звука в 70 децибел. Что касается частоты звуковых колебаний, то воспринимаемый человеческим ухом диапазон простирается от 20 колебаний в секунду (20 Гц) до 20 тысяч колебаний в секунду (20 000 Гц). Ухо состоит из трех отделов (рис. А.9). Наружное ухо состоит из ушной раковины и слухового прохода длиной 25 мм, упирающегося в барабанную перепонку — мембрану, вибрирующую под воздействием звуковых волн. В среднем ухе имеются три слуховые косточки : молоточек, наковальня и стремя, обеспечивающие передачу вибраций овальному окну на границе внутреннего уха. Во внутреннем ухе находится лабиринт, в состав которого входит улитка — трубка длиною 34 мм, спирально свернутая в 2,5 оборота наподобие раковины виноградной улитки. Улитка внутреннего уха заполнена жидкостью, которая приходит в движение под влиянием звуковых волн, передаваемых косточками среднего уха. Движение жидкости вызывает прогибание и смещение базилярной мембраны , проходящей вдоль всей улитки. Эта деформация базилярной мембраны сильнее всего выражена у основания улитки при воздействии высоких звуков, а у вершины — при воздействии низких. В месте максимальной деформации базилярной мембраны в результате возбуждения ее чувствительных клеток, волоски которых соприкасаются с нависающей над ними текториальной мембраной , происходит преобразование вибраций в нервные импульсы. Таким образом, частота звука различается в соответствии с тем участком базилярной мембраны, где происходит ее деформация, а его громкость — в зависимости от числа клеток, вовлеченных в деформацию. Затем информация передается в головной мозг по слуховому нерву, образованному отростками чувствительных волосковых клеток. Рис. А.9 (вверху). Поперечный разрез уха. Рис. А.10 (внизу). Разрез улитки. Жидкость, заполняющая улитку, приводится в движение в результате воздействия стремени на овальное окно. Распространяющаяся волна вызывает деформацию базилярной мембраны и возбуждение волосковых клеток, приходящих в соприкосновение с расположенной над ними текториальной мембраной. Возникающие при этом нервные импульсы передаются по волокнам слухового нерва. Нарушения слуха. Между тем моментом, когда барабанная перепонка начинает колебаться под действием звуковых волн, и началом передачи нервных сигналов в мозг могут возникать различные нарушения, обусловленные поражением того или иного отдела уха. Здесь следует различать так называемую проводниковую и сенсорную глухоту. Проводниковая (кондуктивная) глухота развивается в результате старения организма или вследствие инфекции среднего уха, вызывающей потерю подвижности сочленений слуховых косточек. Возникающее в результате ослабление слуха можно тем не менее компенсировать слуховым аппаратом, который усиливает звуковые сигналы перед их прохождением по костям черепной коробки. Сенсорная глухота возникает в результате деградации или разрушения волосковых клеток внутреннего уха, ответственных за преобразование колебаний базилярной мембраны в нервные импульсы. Иногда разрушению подвергается лишь какая-то определенная группа клеток. Это может случиться у рабочего, вынужденного с утра до вечера ковать металлические изделия: глухота в этом случае развивается в отношении только тех звуковых частот, которые вызывали постоянное возбуждение волосковых клеток. Подобная деградация нервных структур уха приводит к необратимой сенсорной глухоте, не поддающейся восстановлению каким-либо хирургическим вмешательством. Технический прогресс, однако, позволил недавно сконструировать протез, с помощью которого часть неработающих сенсорных клеток можно присоединить к микрокомпьютеру, способному обеспечить различение звуковых волн (пока довольно грубое) и передачу соответствующей информации по слуховому нерву в головной мозг. Зрение Свет — это лишь узкая полоса в спектре электромагнитных колебаний, где энергия может восприниматься человеческим глазом (см. рис. Ц.1). Световой стимул тем интенсивнее (т. е. тем ярче), чем
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату