4. Из параметрических критериев наиболее эффективен и чаще всего используется критерийt Стьюдента. Этот критерий позволяет сравнить средние и стандартные отклонения для двух распределений. В случае если эти показатели принадлежат независимым выборкам, используют формулу t =

.

Для сопряженных выборок используют иную формулу:

t =

.

5. Если необходимо сравнить три или большее число распределений, используют иной параметрический метод — дисперсионный анализ . При этом с помощью метода Шеффе можно выявить пары выборок, различия между которыми достоверны либо недостоверны.

6. Критерий ?2 (хи-квадрат) — это непараметрический критерий, позволяющий проверить, являются ли две переменные независимыми друг от друга. По этому методу сравнивают, как распределяются эмпирические частоты в зависимости от критериев для каждой переменной, с тем, как они распределились бы теоретически, если бы переменные были независимыми. Далее с помощью таблицы, в которую сводятся все частоты, вычисляют критерий ?2 . Для этого сначала находят разницу между каждой эмпирической (Э) и соответствующей теоретической (Т) частотой, а затем сумму этих разностей: ?2 = ?

.

7. Критерий знаков (биномиальный тест) — еще один непараметрический метод, позволяющий легко определить, оказала ли независимая переменная существенное влияние по сравнению с исходным уровнем (фоном). Для этого сначала подсчитывают число «ухудшений» (-) или число «улучшений» (+), а затем сравнивают одно из этих двух чисел с тем, что могло бы получиться в результате чистой случайности (1 шанс из 2, или n /2). Для этого применяют формулу

Z =

.

8. Существуют и другие непараметрические тесты, которые приходится использовать для проверки гипотез тогда, когда нельзя применить параметрические критерии. К этим методам, в частности, относится критерий рангов , позволяющий определить, случайна или нет очередность событий в той или иной последовательности, а также критерийU и критерийT . Последние два критерия используют в случае порядковых переменных соответственно для независимых и зависимых выборок.

9. Какой бы критерий ни использовался, его вычисленное значение следует сравнить с табличным для уровня значимости 0,05 с учетом числа степеней свободы. Если при этом вычисленный результат окажется выше, нулевая гипотеза может быть отвергнута и можно, следовательно, утверждать, что разница достоверна. III.Корреляционный анализ 1. Задача корреляционного анализа заключается в том, чтобы установить возможную связь между двумя показателями, полученными на одной и той же или на двух различных выборках. При этом устанавливается, приводит ли увеличение какого-либо показателя к увеличению или уменьшению другого показателя. 2. Коэффициент корреляции колеблется в пределах от +1, что соответствует полной положительной корреляции, до –1 в случае полной отрицательной корреляции. Если этот коэффициент равен 0, то никакой корреляции между двумя рядами данных нет. 3. Коэффициент корреляции Браве—Пирсона (r ) — это параметрический показатель, для вычисления которого сравнивают средние и стандартные отклонения результатов двух измерений. При этом используют формулу r =
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату