После этого отступления к катализу и ферментам мы теперь переходим от обычного катализа к особым случаям автокатализа, некоторая версия которого, вероятно, играла ключевую роль в происхождении жизни. Вспомните наш гипотетический пример, где молекулы A и B соединяются, чтобы создать Z под влиянием фермента abzase. Что, если сам Z – свой собственный abzase? Я имею в виду, что, если молекула Z имеет как раз подходящую форму и химические свойства, чтобы захватить один компонент A и один B, свести их вместе в правильной ориентации и соединить их, чтобы создать новый Z, точно такой же, как он сам? В нашем предыдущем примере мы могли сказать, что количество abzase в растворе будет влиять на количество произведенного Z. Но теперь если Z и abzase фактически – одна и та же молекула, мы нуждаемся только в одной единственной молекуле Z, чтобы начать цепную реакцию. Первый Z захватывает А и В и соединяет их, создавая больше Z. Затем эти новые Z захватывают больше А и В, образуя еще больше Z, и так далее. Это – автокатализ. При подходящих условиях популяция молекул Z будет расти по экспоненте – подобно взрыву. Такого рода вещи создают обнадеживающее впечатление как составляющие происхождения жизни.

Но это все гипотетически. Джулиус Ребек (Julius Rebek) и его коллеги из института Скриппса в Калифорнии сделали это реальностью. Они исследовали некоторые замечательные примеры автокатализа в реальной химии. В одном из их примеров Z был amino adenosine triacid ester (AATE), A был аминоаденозином, B был пентафторфенил эфиром, и реакция происходила не в воде, а в хлороформе. Само собой разумеется, ни эти специфические химические детали, ни длинные названия, конечно, помнить не обязательно. Важно то, что продукт химической реакции является своим собственным катализатором. Первая молекула AATE сформировалась с трудом, но, будучи однажды сформированной, немедленно запустила цепную реакцию, так как все больше синтезировалось самой AATE, служащей своим собственным катализатором. Словно этого было не достаточно, этот ряд блестящих экспериментов продолжал демонстрировать истинную наследственность в определенном здесь смысле. Ребек и его команда создали систему, в которой существовал больше чем один вариант автокатализируемого вещества. Каждый вариант катализировал свой синтез, используя свой предпочитаемый тип одного из компонентов. Это повысило перспективы истинной конкуренции в популяции образований, демонстрируя настоящую наследственность и поучительную начальную форму дарвиновского отбора.

Химия Ребека очень искусственна. Однако его сообщения красиво иллюстрируют принцип автокатализа, согласно которому продукт химической реакции служит своим собственным катализатором. Это – что-то вроде автокатализа, который необходим для происхождения жизни. Могла ли РНК, или нечто похожее на РНК, в условиях ранней Земли автокатализировать свой собственный синиез в стиле Ребека, и в воде, а не в хлороформе?

Проблема очень сложная, как объяснил немецкий Нобелевский лауреат в области химии Манфред Эйген (Manfred Eigen). Он указал, что любой процесс саморепликации подвергается вырождению в результате копирования ошибок – мутаций. Вообразите популяцию реплицирующихся образований, у которых есть высокая вероятность ошибки в каждом случае копирования. Если закодированное сообщение должно противостоять разрушительному действию мутации, то, по крайней мере, один член популяции в любом поколении должен быть идентичным своему родителю. Если, например, есть десять кодовых единиц («букв») в цепи РНК, средняя доля ошибок на одну букву должна быть меньше, чем одна десятая: мы можем тогда ожидать, что, по крайней мере, у некоторых членов следующего поколения будет полный комплект зачастую исправленных кодовых букв. Но если процент ошибок больше, произойдет неумолимое вырождение в течение поколений буквально из-за единственной мутации, независимо от того, насколько сильно давление отбора. Это называют катастрофой ошибок. Катастрофы ошибок в геномах составляют главную тему интересной книги Марка Ридли (Mark Ridley) «Демон Менделя», но нас в данный момент интересует катастрофа ошибок, которая непосредственно угрожала происхождению жизни.

Короткие цепочки РНК и даже ДНК могут спонтанно самореплицироваться без фермента. Но доля ошибок тогда намного выше, чем в присутствии фермента. И это означает, что прежде чем образовался бы ген достаточной длины, создающий белок для действующего фермента, растущий ген был бы разрушен мутацией. Это – заколдованный круг происхождения жизни. Ген, достаточно большой, чтобы описать фермент, был бы слишком большим, чтобы быть точно реплицированным без помощи фермента того типа, который он пытается описать. Таким образом, очевидно, система не может начать работать.

Разрешением заколдованного круга, которое предлагает Эйген, является теория гиперцикла. Она использует старый принцип – разделяй и властвуй. Закодированная информация подразделяется на субъединицы, достаточно маленькие, чтобы лежать ниже порога катастрофы ошибок. Каждая субъединица – отдельный мини-репликатор, и он является достаточно маленьким, чтобы, по крайней мере, одна копия выжила в каждом поколении. Все субъединицы кооперируются вокруг некоторой важной большей функции, достаточно большой, чтобы перенести катастрофу ошибок, если катализируются одним большим химикатом вместо того, чтобы быть разделенными.

В теории, как я ее описал, есть опасность, что вся система может быть нестабильной, потому что некоторые субъединицы будут самореплицироваться быстрее, чем другие. Здесь вступает в силу хорошо продуманная часть теории. Каждая субъединица преуспевает в присутствии других. Точнее говоря, производство каждой катализируется присутствием другой, так что они формируют цикл взаимозависимости: «гиперцикл». Он автоматически препятствует тому, чтобы любой элемент шел в разнос. Он не может сделать это, потому что зависит от своего предшественника в гиперцикле.

Джон Mэйнард Смит указал на подобие гиперцикла и экосистемы. Количество рыбы зависит от популяции дафнии (водяных блох), которыми они питаются. В свою очередь, количество рыбы влияет на популяцию птиц, поедающих рыб. Птицы создают гуано, которое помогает цветению водорослей, на которых разрастаются дафнии. Полный цикл взаимозависимости является гиперциклом. Эйген и его коллега Питер Шустер (Peter Schuster) предложили некоторый молекулярный гиперцикл как решение загадки замкнутого круга происхождения жизни.

Я собираюсь покинуть теорию гиперцикла в этом месте и возвратиться к предположению, которое полностью с ней совместимо, что РНК в былые времена, когда жизнь только зарождалась, и белки еще не существовали, возможно, выполняла функцию своего собственного катализатора. Это – теория РНК-мира. Чтобы понять, насколько она правдоподобна, мы должны рассмотреть, почему белки способны быть хорошими ферментами, но плохими репликаторами; притом, что ДНК способна быть хорошим репликатором, но плохим ферментом; и наконец, почему именно РНК могла бы быть достаточно хорошей в обеих ролях, чтобы избежать замкнутого круга.

Трехмерная форма в значительной степени несущественна для активности фермента. Белки способны быть хорошими ферментами, потому что они могут принимать почти любую, какую хотите, пространственную форму в трех измерениях как автоматический результат их аминокислотной последовательности в одном измерении. Химическое сродство аминокислот с другими аминокислотами в различных участках цепи определяет конкретный узел, в который скручивается белковая цепь. Таким образом, трехмерная форма белковой молекулы определяется одномерной последовательностью аминокислот, а сама она обусловлена одномерной последовательностью кодовых знаков в гене. В принципе (практика – другое дело, и ужасно трудное) можно записать последовательность аминокислот, которая самопроизвольно свернулась бы почти в любую, какую пожелаете, форму: не только форму, создающую хорошие ферменты, но и любую произвольную, специально выбранную форму (Действительно, есть много различных последовательностей аминокислот, которые приводят к одной и той же форме, что является одной из причин сомневаться относительно наивных расчетов астрономического «неправдоподобия» отдельной белковой цепи, полученной возведением ее длины в 20 степень.). Эти разносторонние таланты белков определяют их способность действовать в качестве ферментов. Белок способен выбрать одну из сотен потенциальных химических реакций, которые могут произойти в клетке, наполненной смесью компонентов.

Белки поэтому образуют замечательные ферменты, способные скручиваться в узлы любой желаемой формы. Но они – отвратительные репликаторы. В отличие от ДНК и РНК, составные элементы которых имеют определенные правила соединения («правило спаривания оснований Уотсона-Крика», обнаруженное этими двумя вдохновленными молодыми людьми), у аминокислот нет таких правил. ДНК наоборот, является отличным репликатором, но отвратительным кандидатом на роль фермента в жизни. Поэтому, в отличие от белков с их почти бесконечным разнообразием трехмерных форм, у ДНК есть только

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату