подобрав подходящую цепочку разрешённых операций из старого перечня). Можно было бы включить в число разрешённых операций вычерчивание эллипса — ведь устройство для вычерчивания эллипса лишь немногим сложнее циркуля (достаточно вбить два гвоздя в фокусы эллипса и протянуть между ними нить, более длинную, нежели расстояние между фокусами; зацепим нить стилом и натянем; тогда, перемещая стило так, чтобы нить оставалась натянутой, получим эллипс). Да даже и не надо заботиться о лёгкости выполнения разрешённой операции: строго говоря, мы вправе объявить разрешённой любую операцию по нашему усмотрению. Перечень разрешённых операций, с чисто логической точки зрения, достаточно произволен. Однако, коль скоро он выбран, он уже не меняется. Полезная аналогия: свод юридических актов. С чисто логической, опять же, точки зрения, законы произвольно устанавливаются законодателем, но, будучи принятыми, они уже — хотя бы на определённый период — не меняются; во всяком случае, так должно быть.
Объясним теперь, почему задачам на построение было уделено здесь такое внимание. Причина в том, что на примере этих задач мы пытались продемонстрировать некоторые математические представления принципиального характера, представления, которые можно отнести к философии математики, а то и к философии вообще. Перечислим эти представления.
Во-первых, был ещё раз проиллюстрирован тезис, что
Во-вторых, была показана необходимость уточнения того, в пределах какого класса объектов ищется решение задачи. Иногда этот класс состоит из объектов довольно простой (честнее было бы сказать: довольно привычной) природы — троек чисел в проблеме Ферма, отрезков в проблеме соизмери мости, но иногда он состоит из довольно-таки специальных объектов, подобно цепочкам операций в задачах на построение.
В-третьих, уточнение, о котором только что шла речь, особенно необходимо в случае, если задача оказывается нерешимой.
В-четвёртых, представление о разрешённой операции, в его общем виде, шире сферы задач на построение. Оно существенно и для компьютерной науки (Computer Science), и для компьютерной практики, а именно для программирования. Каждый компьютер имеет свой набор разрешённых операций, а каждая компьютерная программа есть некоторая цепочка операций, выбранных из этого набора.
Именно в силу своего философского аспекта задачи на построение должны занимать достойное место в школьном курсе геометрии. Мы не имеем в виду сложных задач, требующих зачастую большой изобретательности, — такие задачи должны изучаться в специализированных математических классах. Нет, мы имеем в виду самые простые задачи вроде задачи о построении правильного треугольника или задачи о нахождении середины отрезка.
Глава 6. Массовые задачи и алгоритмы
В который уже раз подчеркнем, что задача — это всегда требование что-то найти, построить, указать. В школе это «что-то» обычно называют
В замечательной одноактной пьесе «Урок» Эжена Ионеско есть такой диалог, который мы приведём с купюрами.
«Учитель. <...> Сколько будет, ну, скажем, если три миллиарда семьсот пятьдесят пять миллионов девятьсот девяносто восемь тысяч двести пятьдесят один умножить на пять миллиардов сто шестьдесят два миллиона триста три тысячи пятьсот восемь?
Ученица. Это будет девятнадцать квинтиллионов триста девяносто квадриллионов два триллиона восемьсот сорок четыре миллиарда двести
девятнадцать миллионов сто шестьдесят четыре тысячи пятьсот восемь
<...>
Учитель