человеческими генами — это не только доноры необходимых органов для пересадки, но и живые фабрики лекарств. Один из таких проектов — производство лактоферрина гибридными козами — близок к осуществлению. Лактоферрин — естественный белок человека, который обладает бактерицидным действием и значительно улучшает работу кишечника у детей-искусственников. Ген этого белка смоделировали, затем внедрили в выделенную яйцеклетку козы, после подсадили измененную яйцеклетку в матку. Уже получено от этой козы потомство и ожидается создание целого стада коз с таким полезным молоком. То же самое можно (и нужно!) проделать и с другими естественными лекарствами. Создание трансгенных животных, продуцирующих лекарственные белки человека, — это важнейшая сфера медицинских технологий. Она позволяет не только продуцировать естественные, уже опробованные организмом средства, но и создавать новые.

Еще раз подчеркну, что все перечисленные задачи требуют огромного числа экспериментов на эмбриональных клетках. Как контролировать и направлять их деление и специализацию? как превратить специализированную клетку обратно в эмбриональную? какие вещества регулируют развитие и регенерацию? — на многие подобные вопросы можно будет ответить только по результатам массовых экспериментов. Дешевой и доступной основой для таких экспериментов могут быть только гибридные клетки, такие, какие создал британский исследователь Лил Армстронг.

“Я рыбная мышь или мышная рыба?”

Ученые создают гибридов, трансгенных животных, животных с органами другого вида. При этом сами создатели не очень-то задумываются, кого они создают. Когда селекционеры в XX веке скрещивали животных и растения разных видов, то результат скрещивания назывался сельскохозяйственным гибридом. Других вариантов не было.

Но в конце XX века геном перестал рассматриваться как нечто неделимое, необходимое и достаточное для признания самостоятельности вида. Виды живых существ стали выделять по степени различия ДНК. То есть геном из целого и неделимого качества превратился в количество информации. Большинство биологов вынуждено пользоваться новыми методами классификации (систематики) животных и растений. Вместо таблиц с морфологическими признаками им приходится пользоваться схемами с дихотомией (ветвлением) геномов. Старые определители с морфологическими признаками теперь называют снисходительно “обывательская систематика”. Если современный биолог говорит: “Данный вид животных в развитии далеко продвинулся от предковой формы”, — то имеет в виду не степень его морфологической специализации, а большее количественное отличие от генома предковой формы.

Межвидовыми гибридами считают следующие категории организмов:

1) химеры. Это, во-первых, зародыши или эмбрионы, имеющие хотя бы одну клетку представителя иного вида. Во-вторых, это взрослые животные, имеющие хотя бы одну клетку, ткань или орган представителя иного вида;

2) настоящие гибриды. Так называют зародышей или эмбрионов, получившихся в результате слияния половых клеток разных видов;

3) трансгены — эмбрионы или взрослые организмы, имеющие хотя бы один ген представителя другого вида;

4) цибриды (cybrid, от cytoplasma+hybrid). Это продукты переноса ядерного генетического материала в цитоплазму неродственной яйцеклетки.

Что же с позиций новой систематики стали представлять собой все эти варианты гибридизации? Конечно же новые виды. Их генотип отличается от генотипа родителей, то есть на схеме дихотомии геномов они теперь выделяются в отдельную ветвь точно так же, как и “нормальные” виды. С формальных позиций получается, что трансгенная коза с геном человеческого лактоферрина — это уже новый вид.

Еще менее понятен случай с химерами: мышь, которой на ранних эмбриональных стадиях пересаживали кусочки ткани кролика (или человека), имеет часть клеток с генами кролика (человека), а часть — с мышиными.

В этом случае даже непонятно, какую из этих частей генетической информации использовать для классификации. Вероятно, ту часть, которая передается по наследству. А если и в половых клетках такая же чехарда: часть из них родная, а часть — нет?

В случае с переносом ядерного материала в чужую цитоплазму тоже нет ясности с видовым статусом. Ведь в них ядерная генетическая информация все же единообразна, то есть принадлежит одному виду. Но есть и другая часть наследственной информации. Она хранилась в митохондриях, энергетических органеллах клетки, это так называемая митохондриальная ДНК. Митохондриальная ДНК передается от потомка к потомку только с цитоплазмой материнской яйцеклетки. Пока точно неизвестно, какую долю видоспецифичного облика и свойств привносят эти части наследственной информации. Можно было бы декларативно постановить: вид определяет информация из ядерной ДНК. Но вспомним, что реконструкция “митохондриальной Евы” — праматери человечества — была осуществлена именно на основе митохондриальной ДНК. Если принять декларацию о полном ядерном доминировании, то можно попрощаться с обретенной митохондриальной праматерью человечества. Интуитивно ясно, что прощаться с митохондриальной Евой рано, дело тут в крушении самого понятия “вид”, иерархических таксономических конструкций, терминологической системы. Все это нужно создавать заново. При этом в новой концепции вида должны быть учтены и все формы межвидовой гибридизации. Пока что представление об объективных критериях таксономического вида очень неустойчиво, поэтому непонятно, какое место занимают в этой концепции межвидовые гибриды.

Революция в идеологии систематического описания природы подняла ряд неожиданных вопросов. Среди них такие: можно ли патентовать гибриды? следует ли эти трансгенные гибриды охранять как редкие виды? согласно ли создание новых видов с этикой природы? С патентованием гибридов проблема возникает из-за известного запрета на патент новых видов — ведь человек не имеет права патентовать труды

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату